scholarly journals Algebraic Stream Processing

1995 ◽  
Author(s):  
◽  
S. Stephens

We identify and analyse the typically higher-order approaches to stream processing in the literature. From this analysis we motivate an alternative approach to the specification of SPSs as STs based on an essentially first-order equational representation. This technique is called Cartesian form specification. More specifically, while STs are properly second-order objects we show that using Cartesian forms, the second-order models needed to formalise STs are so weak that we may use and develop well-understood first-order methods from computability theory and mathematical logic to reason about their properties. Indeed, we show that by specifying STs equationally in Cartesian form as primitive recursive functions we have the basis of a new, general purpose and mathematically sound theory of stream processing that emphasises the formal specification and formal verification of STs. The main topics that we address in the development of this theory are as follows. We present a theoretically well-founded general purpose stream processing language ASTRAL (Algebraic Stream TRAnsformer Language) that supports the use of modular specification techniques for full second-order STs. We show how ASTRAL specifications can be given a Cartesian form semantics using the language PREQ that is an equational characterisation of the primitive recursive functions. In more detail, we show that by compiling ASTRAL specifications into an equivalent Cartesian form in PREQ we can use first-order equational logic with induction as a logical calculus to reason about STs. In particular, using this calculus we identify a syntactic class of correctness statements for which the verification of ASTRAL programmes is decidable relative to this calculus. We define an effective algorithm based on term re-writing techniques to implement this calculus and hence to automatically verify a very broad class of STs including conventional hardware devices. Finally, we analyse the properties of this abstract algorithm as a proof assistant and discuss various techniques that have been adopted to develop software tools based on this algorithm.

1965 ◽  
Vol 30 (3) ◽  
pp. 295-317 ◽  
Author(s):  
Gaisi Takeuti

Although Peano's arithmetic can be developed in set theories, it can also be developed independently. This is also true for the theory of ordinal numbers. The author formalized the theory of ordinal numbers in logical systems GLC (in [2]) and FLC (in [3]). These logical systems which contain the concept of ‘arbitrary predicates’ or ‘arbitrary functions’ are of higher order than the first order predicate calculus with equality. In this paper we shall develop the theory of ordinal numbers in the first order predicate calculus with equality as an extension of Peano's arithmetic. This theory will prove to be easy to manage and fairly powerful in the following sense: If A is a sentence of the theory of ordinal numbers, then A is a theorem of our system if and only if the natural translation of A in set theory is a theorem of Zermelo-Fraenkel set theory. It will be treated as a natural extension of Peano's arithmetic. The latter consists of axiom schemata of primitive recursive functions and mathematical induction, while the theory of ordinal numbers consists of axiom schemata of primitive recursive functions of ordinal numbers (cf. [5]), of transfinite induction, of replacement and of cardinals. The latter three axiom schemata can be considered as extensions of mathematical induction.In the theory of ordinal numbers thus developed, we shall construct a model of Zermelo-Fraenkel's set theory by following Gödel's construction in [1]. Our intention is as follows: We shall define a relation α ∈ β as a primitive recursive predicate, which corresponds to F′ α ε F′ β in [1]; Gödel defined the constructible model Δ using the primitive notion ε in the universe or, in other words, using the whole set theory.


2012 ◽  
Vol 7 ◽  
Author(s):  
Anders Søgaard ◽  
Søren Lind Kristiansen

Existing logic-based querying tools for dependency treebanks use first order logic or monadic second order logic. We introduce a very fast model checker based on hybrid logic with operators ↓, @ and A and show that it is much faster than an existing querying tool for dependency treebanks based on first order logic, and much faster than an existing general purpose hybrid logic model checker. The querying tool is made publicly available.


1996 ◽  
Vol 06 (03) ◽  
pp. 485-496 ◽  
Author(s):  
HARRY DANKOWICZ

This paper derives an alternative approach to the Melnikov method, which greatly reduces the amount of algebra involved in higher-order calculations. To illustrate this, a particular system is studied for which such a higher-order analysis is necessary, due to an identically vanishing first-order Melnikov function. The results of a second-order calculation imply the existence of transverse homoclinic orbits and, consequently, the existence of a horseshoe.


1992 ◽  
Vol 57 (1) ◽  
pp. 53-81 ◽  
Author(s):  
William I. Gasarch ◽  
Mark G. Pleszkoch ◽  
Robert Solovay

AbstractWe prove that the set of all recursive functions cannot be inferred using first-order queries in the query language containing extra symbols [+ , <]. The proof of this theorem involves a new decidability result about Presburger arithmetic which is of independent interest. Using our machinery, we show that the set of all primitive recursive functions cannot be inferred with a bounded number of mind changes, again using queries in [+, <]. Additionally, we resolve an open question in [7] about passive versus active learning.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


2017 ◽  
Vol 9 (3) ◽  
pp. 17-30
Author(s):  
Kelly James Clark

In Branden Thornhill-Miller and Peter Millican’s challenging and provocative essay, we hear a considerably longer, more scholarly and less melodic rendition of John Lennon’s catchy tune—without religion, or at least without first-order supernaturalisms (the kinds of religion we find in the world), there’d be significantly less intra-group violence. First-order supernaturalist beliefs, as defined by Thornhill-Miller and Peter Millican (hereafter M&M), are “beliefs that claim unique authority for some particular religious tradition in preference to all others” (3). According to M&M, first-order supernaturalist beliefs are exclusivist, dogmatic, empirically unsupported, and irrational. Moreover, again according to M&M, we have perfectly natural explanations of the causes that underlie such beliefs (they seem to conceive of such natural explanations as debunking explanations). They then make a case for second-order supernaturalism, “which maintains that the universe in general, and the religious sensitivities of humanity in particular, have been formed by supernatural powers working through natural processes” (3). Second-order supernaturalism is a kind of theism, more closely akin to deism than, say, Christianity or Buddhism. It is, as such, universal (according to contemporary psychology of religion), empirically supported (according to philosophy in the form of the Fine-Tuning Argument), and beneficial (and so justified pragmatically). With respect to its pragmatic value, second-order supernaturalism, according to M&M, gets the good(s) of religion (cooperation, trust, etc) without its bad(s) (conflict and violence). Second-order supernaturalism is thus rational (and possibly true) and inconducive to violence. In this paper, I will examine just one small but important part of M&M’s argument: the claim that (first-order) religion is a primary motivator of violence and that its elimination would eliminate or curtail a great deal of violence in the world. Imagine, they say, no religion, too.Janusz Salamon offers a friendly extension or clarification of M&M’s second-order theism, one that I think, with emendations, has promise. He argues that the core of first-order religions, the belief that Ultimate Reality is the Ultimate Good (agatheism), is rational (agreeing that their particular claims are not) and, if widely conceded and endorsed by adherents of first-order religions, would reduce conflict in the world.While I favor the virtue of intellectual humility endorsed in both papers, I will argue contra M&M that (a) belief in first-order religion is not a primary motivator of conflict and violence (and so eliminating first-order religion won’t reduce violence). Second, partly contra Salamon, who I think is half right (but not half wrong), I will argue that (b) the religious resources for compassion can and should come from within both the particular (often exclusivist) and the universal (agatheistic) aspects of religious beliefs. Finally, I will argue that (c) both are guilty, as I am, of the philosopher’s obsession with belief. 


2009 ◽  
Vol 74 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Dennis N. Kevill ◽  
Byoung-Chun Park ◽  
Jin Burm Kyong

The kinetics of nucleophilic substitution reactions of 1-(phenoxycarbonyl)pyridinium ions, prepared with the essentially non-nucleophilic/non-basic fluoroborate as the counterion, have been studied using up to 1.60 M methanol in acetonitrile as solvent and under solvolytic conditions in 2,2,2-trifluoroethan-1-ol (TFE) and its mixtures with water. Under the non- solvolytic conditions, the parent and three pyridine-ring-substituted derivatives were studied. Both second-order (first-order in methanol) and third-order (second-order in methanol) kinetic contributions were observed. In the solvolysis studies, since solvent ionizing power values were almost constant over the range of aqueous TFE studied, a Grunwald–Winstein equation treatment of the specific rates of solvolysis for the parent and the 4-methoxy derivative could be carried out in terms of variations in solvent nucleophilicity, and an appreciable sensitivity to changes in solvent nucleophilicity was found.


Author(s):  
Uriah Kriegel

Brentano’s theory of judgment serves as a springboard for his conception of reality, indeed for his ontology. It does so, indirectly, by inspiring a very specific metaontology. To a first approximation, ontology is concerned with what exists, metaontology with what it means to say that something exists. So understood, metaontology has been dominated by three views: (i) existence as a substantive first-order property that some things have and some do not, (ii) existence as a formal first-order property that everything has, and (iii) existence as a second-order property of existents’ distinctive properties. Brentano offers a fourth and completely different approach to existence talk, however, one which falls naturally out of his theory of judgment. The purpose of this chapter is to present and motivate Brentano’s approach.


Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


Sign in / Sign up

Export Citation Format

Share Document