Concurrent Design Optimization of Mechanical Structure and Control for High Speed Robots

Author(s):  
Jahng-Hyon Park ◽  
Haruhiko Asada
1994 ◽  
Vol 116 (3) ◽  
pp. 344-356 ◽  
Author(s):  
Jahng-Hyon Park ◽  
Haruhiko Asada

A concurrent design method of mechanical structure and control is developed for two-link high speed robots. An integrated design approach to achieve high speed positioning is explored, in which comprehensive design parameters describing arm link geometry, actuator locations, and feedback gains are optimized with respect to the settling time of the system. First, a two-link, nonrigid arm is analyzed and a simple dynamic model representing rapid positioning processes is obtained. Optimal feedback gains minimizing the settling time are obtained as functions of structural parameters involved in the dynamic model. The structural parameters are then optimized using a nonlinear programming technique in order to obtain an overall optimal performance. Based on the optimal design, a prototype high speed robot is built and tested. The resultant arm design shows an outstanding performance, which is otherwise unattainable if the structure and control are designed separately.


Robotica ◽  
2021 ◽  
pp. 1-16
Author(s):  
Guoliang Ma ◽  
Kaixian Ba ◽  
Zhiwu Han ◽  
Zhengguo Jin ◽  
Bin Yu ◽  
...  

SUMMARY In this paper, mathematical models of kinematics, statics and inverse dynamics are derived firstly according to the mechanical structure of leg hydraulic drive system (LHDS). Then, all the above models are integrated with MATLAB/Simulink to build the LHDS simulation model, the model not only considers influence of leg dynamic characteristics on hydraulic system but also takes into account nonlinearity, variable load characteristics and other common problems brought by hydraulic system, and solves compatibility and operation time which brought by using multiple software simultaneously. The experimental results show the simulation model built in this paper can accurately express characteristics of the system.


1989 ◽  
Vol 27 (3) ◽  
pp. 375-394 ◽  
Author(s):  
K. YOUCEF-TOUMI ◽  
A. T. Y. KUO
Keyword(s):  

2020 ◽  
Vol 26 (3) ◽  
pp. 169-183
Author(s):  
Phudit Ampririt ◽  
Yi Liu ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
Leonard Barolli ◽  
...  

The Fifth Generation (5G) networks are expected to be flexible to satisfy demands of high-quality services such as high speed, low latencies and enhanced reliability from customers. Also, the rapidly increasing amount of user devices and high user’s requests becomes a problem. Thus, the Software-Defined Network (SDN) will be the key function for efficient management and control. To deal with these problems, we propose a Fuzzy-based SDN approach. This paper presents and compares two Fuzzy-based Systems for Admission Control (FBSAC) in 5G wireless networks: FBSAC1 and FBSAC2. The FBSAC1 considers for admission control decision three parameters: Grade of Service (GS), User Request Delay Time (URDT) and Network Slice Size (NSS). In FBSAC2, we consider as an additional parameter the Slice Priority (SP). So, FBSAC2 has four input parameters. The simulation results show that the FBSAC2 is more complex than FBSAC1, but it has a better performance for admission control.


Sign in / Sign up

Export Citation Format

Share Document