Water Surface Object Detection Based on Neural Style Learning Algorithm

Author(s):  
Peiyong Gong ◽  
Kai Zheng ◽  
Yi Jiang ◽  
Jia Liu
Author(s):  
Aofeng Li ◽  
Xufang Zhu ◽  
Shuo He ◽  
Jiawei Xia

AbstractIn view of the deficiencies in traditional visual water surface object detection, such as the existence of non-detection zones, failure to acquire global information, and deficiencies in a single-shot multibox detector (SSD) object detection algorithm such as remote detection and low detection precision of small objects, this study proposes a water surface object detection algorithm from panoramic vision based on an improved SSD. We reconstruct the backbone network for the SSD algorithm, replace VVG16 with a ResNet-50 network, and add five layers of feature extraction. More abundant semantic information of the shallow feature graph is obtained through a feature pyramid network structure with deconvolution. An experiment is conducted by building a water surface object dataset. Results showed the mean Average Precision (mAP) of the improved algorithm are increased by 4.03%, compared with the existing SSD detecting Algorithm. Improved algorithm can effectively improve the overall detection precision of water surface objects and enhance the detection effect of remote objects.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3523 ◽  
Author(s):  
Lili Zhang ◽  
Yi Zhang ◽  
Zhen Zhang ◽  
Jie Shen ◽  
Huibin Wang

In this paper, we consider water surface object detection in natural scenes. Generally, background subtraction and image segmentation are the classical object detection methods. The former is highly susceptible to variable scenes, so its accuracy will be greatly reduced when detecting water surface objects due to the changing of the sunlight and waves. The latter is more sensitive to the selection of object features, which will lead to poor generalization as a result, so it cannot be applied widely. Consequently, methods based on deep learning have recently been proposed. The River Chief System has been implemented in China recently, and one of the important requirements is to detect and deal with the water surface floats in a timely fashion. In response to this case, we propose a real-time water surface object detection method in this paper which is based on the Faster R-CNN. The proposed network model includes two modules and integrates low-level features with high-level features to improve detection accuracy. Moreover, we propose to set the different scales and aspect ratios of anchors by analyzing the distribution of object scales in our dataset, so our method has good robustness and high detection accuracy for multi-scale objects in complex natural scenes. We utilized the proposed method to detect the floats on the water surface via a three-day video surveillance stream of the North Canal in Beijing, and validated its performance. The experiments show that the mean average precision (MAP) of the proposed method was 83.7%, and the detection speed was 13 frames per second. Therefore, our method can be applied in complex natural scenes and mostly meets the requirements of accuracy and speed of water surface object detection online.


2020 ◽  
Vol 57 (18) ◽  
pp. 181502
Author(s):  
刘雨青 Liu Yuqing ◽  
冯俊凯 Feng Junkai ◽  
邢博闻 Xing Bowen ◽  
曹守启 Cao Shouqi

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhiguo Zhou ◽  
Jiaen Sun ◽  
Jiabao Yu ◽  
Kaiyuan Liu ◽  
Junwei Duan ◽  
...  

Water surface object detection is one of the most significant tasks in autonomous driving and water surface vision applications. To date, existing public large-scale datasets collected from websites do not focus on specific scenarios. As a characteristic of these datasets, the quantity of the images and instances is also still at a low level. To accelerate the development of water surface autonomous driving, this paper proposes a large-scale, high-quality annotated benchmark dataset, named Water Surface Object Detection Dataset (WSODD), to benchmark different water surface object detection algorithms. The proposed dataset consists of 7,467 water surface images in different water environments, climate conditions, and shooting times. In addition, the dataset comprises a total of 14 common object categories and 21,911 instances. Simultaneously, more specific scenarios are focused on in WSODD. In order to find a straightforward architecture to provide good performance on WSODD, a new object detector, named CRB-Net, is proposed to serve as a baseline. In experiments, CRB-Net was compared with 16 state-of-the-art object detection methods and outperformed all of them in terms of detection precision. In this paper, we further discuss the effect of the dataset diversity (e.g., instance size, lighting conditions), training set size, and dataset details (e.g., method of categorization). Cross-dataset validation shows that WSODD significantly outperforms other relevant datasets and that the adaptability of CRB-Net is excellent.


Recognition and detection of an object in the watched scenes is a characteristic organic capacity. Animals and human being play out this easily in day by day life to move without crashes, to discover sustenance, dodge dangers, etc. Be that as it may, comparable PC techniques and calculations for scene examination are not all that direct, in spite of their exceptional advancement. Object detection is the process in which finding or recognizing cases of articles (for instance faces, mutts or structures) in computerized pictures or recordings. This is the fundamental task in computer. For detecting the instance of an object and to pictures having a place with an article classification object detection method usually used learning algorithm and extracted features. This paper proposed a method for moving object detection and vehicle detection.


Author(s):  
Adi Wibowo ◽  
Cahyo Adhi Hartanto ◽  
Panji Wisnu Wirawan

The latest developments in the smartphone-based skin cancer diagnosis application allow simple ways for portable melanoma risk assessment and diagnosis for early skin cancer detection. Due to the trade-off problem (time complexity and error rate) on using a smartphone to run a machine learning algorithm for image analysis, most of the skin cancer diagnosis apps execute the image analysis on the server. In this study, we investigate the performance of skin cancer images detection and classification on android devices using the MobileNet v2 deep learning model. We compare the performance of several aspects; object detection and classification method, computer and android based image analysis, image acquisition method, and setting parameter. Skin cancer actinic Keratosis and Melanoma are used to test the performance of the proposed method. Accuracy, sensitivity, specificity, and running time of the testing methods are used for the measurement. Based on the experiment results, the best parameter for the MobileNet v2 model on android using images from the smartphone camera produces 95% accuracy for object detection and 70% accuracy for classification. The performance of the android app for object detection and classification model was feasible for the skin cancer analysis. Android-based image analysis remains within the threshold of computing time that denotes convenience for the user and has the same performance accuracy with the computer for the high-quality images. These findings motivated the development of disease detection processing on android using a smartphone camera, which aims to achieve real-time detection and classification with high accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Younghyun Lee ◽  
David K. Han ◽  
Hanseok Ko

A reinforced AdaBoost learning algorithm is proposed for object detection with local pattern representations. In implementing Adaboost learning, the proposed algorithm employs an exponential criterion as a cost function and Newton’s method for its optimization. In particular, we introduce an optimal selection of weak classifiers minimizing the cost function and derive the reinforced predictions based on a judicial confidence estimate to determine the classification results. The weak classifier of the proposed method produces real-valued predictions while that of the conventional Adaboost method produces integer valued predictions of +1 or −1. Hence, in the conventional learning algorithms, the entire sample weights are updated by the same rate. On the contrary, the proposed learning algorithm allows the sample weights to be updated individually depending on the confidence level of each weak classifier prediction, thereby reducing the number of weak classifier iterations for convergence. Experimental classification performance on human face and license plate images confirm that the proposed method requires smaller number of weak classifiers than the conventional learning algorithm, resulting in higher learning and faster classification rates. An object detector implemented based on the proposed learning algorithm yields better performance in field tests in terms of higher detection rate with lower false positives than that of the conventional learning algorithm.


Sign in / Sign up

Export Citation Format

Share Document