scholarly journals Omnipolar EGM Voltage Mapping for Atrial Fibrosis Identification Evaluated with an Electrophysiological Model

Author(s):  
Jennifer Riccio ◽  
Alejandro Alcaine ◽  
Sara Rocher ◽  
Pablo Laguna ◽  
Javier Saiz ◽  
...  
EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
R Adelino Recasens ◽  
L Llorca-Fenes ◽  
A Sarrias ◽  
A Teis ◽  
V Bazan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. BACKGROUND Left atrial fibrosis is a marker of atrial disease and it has an important role in the pathophysiology of atrial fibrillation (AF). Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is an emerging tool to detect left atrial fibrosis. However, data on the correlation between LGE-CMR detected fibrosis and low voltage areas to define fibrotic tissue is scarce. PURPOSE To assess the correlation and degree of concordance between LGE-CMR and high-density bipolar voltage mapping for the identification of left atrial abnormal tissue. METHODS Seven patients scheduled for AF ablation (including first and redo procedures) underwent a preprocedural 1.5 Tesla LGE-CMR including left atrial 3D inversion-recovery steady-state free precession sequence (ECG and respiratory triggering) 20 minutes after the injection of 0.2 mmol/kg of gadobutrol. A high-density electroanatomical voltage mapping was acquired with a 16-electrode grid configuration mapping catheter during sinus rhythm. LGE-CMR studies were analyzed off-line with an advanced image post-processing tool (ADAS 3D). Atrial wall intensity was normalized to blood pool, obtaining an image intensity ratio (IIR) value for each CMR point of the 3D model.  High-density bipolar voltage maps and LGE-CMR 3D left atrial reconstruction were merged (figure, panel A). Voltage points were projected to the LGE-CMR left atrial 3D model, allowing point-by-point correlation analysis between voltage (log transformed due to non-normal distribution) with IIR. Left atrial fibrosis area and percentage were quantified using the standard cut-off values (bipolar voltage <0.5mV and IIR >1.2). We assessed the degree of concordance for normal and abnormal (fibrosis) tissue classification between the two techniques using different cut-off values (< 0.5mV and <1mV for bipolar voltage and >0.9, >1, >1.1 and >1.2 for IIR).   RESULTS The average fibrosis area detected with LGE-CMR was lower than that detected with high-density bipolar voltage, using standard cut-off values (18.6 ± 5.7 cm2 vs. 40.6 ± 12.5 cm2, p = 0.13 respectively). There was a poor global point-by-point correlation between log-transformed voltage and IIR was r=-0.093, p < 0.001 (figure, panel B). The best concordance was obtained when using bipolar voltage and IIR of 0.5mV and 1.2, respectively (64.7 %; Kappa 0.101). However, the highest kappa index (0.142) for concordance was achieved with cutoff values of bipolar voltage <1mV and IIR >1, with an agreement percentage of 54.6%. CONCLUSIONS Left atrial tissue characterization between LGE-CMR and high-density bipolar voltage mapping showed significant but poor point-by-point correlation. Although the highest concordance was obtained using standard cutoff values, the Kappa index was best when applying non-standard cutoffs (1mV for bipolar voltage and >1 for IIR). Abstract Figure.


2016 ◽  
Vol 20 (2) ◽  
pp. 111 ◽  
Author(s):  
O. V. Sapelnikov ◽  
Yu. A. Shuvalova ◽  
D. Yu. Cherkashin ◽  
A. A. Krupnov ◽  
A. S. Partigulova ◽  
...  

<p><strong>Aim:</strong> This pilot study is designed to better understand the mechanisms of development and control of atrial fibrillation.<br /><strong>Methods:</strong> The correlation between fibrosis index (FI), which was calculated intraoperatively with special software, and clinical and instrumental data was analyzed. Also evaluated were FI values as compared to AF catheter ablation outcomes. <br /><strong>Results:</strong> Voltage mapping may be considered as a possible alternative to MRI examination and in some cases it is more informative. <br /><strong>Conclusion:</strong> It was found out that the preliminary results received are a good start for planning a large-scale study in this area related to assessment of the predicative and practical value of the fibrosis index.</p>


2020 ◽  
Vol 9 (2) ◽  
pp. 61-70
Author(s):  
Harold Rivner ◽  
Raul D Mitrani ◽  
Jeffrey J Goldberger ◽  
◽  
◽  
...  

While AF most often occurs in the setting of atrial disease, current assessment and treatment of patients with AF does not focus on the extent of the atrial myopathy that serves as the substrate for this arrhythmia. Atrial myopathy, in particular atrial fibrosis, may initiate a vicious cycle in which atrial myopathy leads to AF, which in turn leads to a worsening myopathy. Various techniques, including ECG, plasma biomarkers, electroanatomical voltage mapping, echocardiography, and cardiac MRI, can help to identify and quantify aspects of the atrial myopathy. Current therapies, such as catheter ablation, do not directly address the underlying atrial myopathy. There is emerging research showing that by targeting this myopathy we can help decrease the occurrence and burden of AF.


2018 ◽  
Vol 49 (1) ◽  
pp. 226-234 ◽  
Author(s):  
David Heinzmann ◽  
Stefan Fuß ◽  
Saskia v. Ungern-Sternberg ◽  
Jürgen Schreieck ◽  
Meinrad Gawaz ◽  
...  

Background/Aims: Fibrotic remodeling of the atria plays a key role in the pathogenesis of atrial fibrillation (AF). As little is known about the contribution of circulating monocytes in atrial remodeling and the pathophysiology of AF, we investigated profibrotic factors in different subsets of circulating monocytes obtained from patients with atrial fibrillation undergoing catheter ablation. Methods: A 3D high density voltage mapping was performed in sinus rhythm to evaluate the extent of low-voltage areas (LVAs) in the atria of 71 patients with persistent AF. Low-voltage was defined as signals of < 0.5mV during sinus rhythm. Prior to ablation, blood was drawn and monocytes were analyzed by FACS. Based on the expression of CD14 and CD16, three subgroups including CD14++ CD16- (‘classical’), CD14++ CD16+ (‘intermediate’), and CD14+ CD16++ (‘non-classical’) were analyzed for the expression of TGFb, CD147, and MMP-9, representing pivotal profibrotic pathways in myocardial remodeling. Results: Expression of TGFb was increased in CD14+ monocytes of patients with extensive LVAs compared to patients with a low extend of LVAs. While CD14++ CD16- monocytes showed no difference, CD14++ CD16+ and CD14+ CD16++ monocytes showed a strong increase of TGFb abundance. Although CD147 and MMP-9 are strongly associated with myocardial fibrosis, we found no difference in expression between the two groups in any monocyte subsets. Conclusion: TGFb is specifically upregulated on CD14++ CD16+ and CD14+ CD16++ monocytes in patients with extensive LVAs undergoing catheter ablation.


2019 ◽  
Vol 8 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Stylianos Tzeis ◽  
Dimitrios Asvestas ◽  
Panos Vardas

Fibrosis plays a fundamental role in the initiation and maintenance of AF, mainly due to enhanced automaticity and anisotropy-related re-entry. The identification and quantification of atrial fibrosis is achieved either preprocedurally by late gadolinium enhancement MRI or intraprocedurally using electroanatomic voltage mapping. The presence and extent of left atrial fibrosis among AF patients may influence relevant decision making regarding the need for anticoagulation, the adoption of rate versus rhythm control and mainly the type of ablation strategy that will be followed during interventional treatment. Several types of individualised substrate modifications targeting atrial fibrotic areas have been proposed, although their impact on patient outcome needs to be further investigated in adequately powered prospective randomised controlled clinical trials.


Author(s):  
Zsuzsanna Kis ◽  
Astrid Amanda Hendriks ◽  
Taulant Muka ◽  
Wichor M. Bramer ◽  
Istvan Kovacs ◽  
...  

Introduction: Atrial Fibrillation (AF) is associated with remodeling of the atrial tissue, which leads to fibrosis that can contribute to the initiation and maintenance of AF. Delayed- Enhanced Cardiac Magnetic Resonance (DE-CMR) imaging for atrial wall fibrosis detection was used in several studies to guide AF ablation. The aim of present study was to systematically review the literature on the role of atrial fibrosis detected by DE-CMR imaging on AF ablation outcome. Methods: Eight bibliographic electronic databases were searched to identify all published relevant studies until 21st of March, 2016. Search of the scientific literature was performed for studies describing DE-CMR imaging on atrial fibrosis in AF patients underwent Pulmonary Vein Isolation (PVI). Results: Of the 763 citations reviewed for eligibility, 5 articles (enrolling a total of 1040 patients) were included into the final analysis. The overall recurrence of AF ranged from 24.4 - 40.9% with median follow-up of 324 to 540 days after PVI. With less than 5-10% fibrosis in the atrial wall there was a maximum of 10% recurrence of AF after ablation. With more than 35% fibrosis in the atrial wall there was 86% recurrence of AF after ablation. Conclusion: Our analysis suggests that more extensive left atrial wall fibrosis prior ablation predicts the higher arrhythmia recurrence rate after PVI. The DE-CMR imaging modality seems to be a useful method for identifying the ideal candidate for catheter ablation. Our findings encourage wider usage of DE-CMR in distinct AF patients in a pre-ablation setting.


Circulation ◽  
2020 ◽  
Vol 142 (13) ◽  
pp. 1249-1260 ◽  
Author(s):  
Michela Casella ◽  
Antonio Dello Russo ◽  
Marco Bergonti ◽  
Valentina Catto ◽  
Edoardo Conte ◽  
...  

Background: Electroanatomic voltage mapping (EVM) is a promising modality for guiding endomyocardial biopsies (EMBs). However, few data support its feasibility and safety. We now report the largest cohort of patients undergoing EVM-guided EMBs to show its diagnostic yield and to compare it with a cardiac magnetic resonance (CMR)–guided approach. Methods: We included 162 consecutive patients undergoing EMB at our institution from 2010 to 2019. EMB was performed in pathological areas identified at EVM and CMR. CMR and EVM sensitivity and specificity regarding the identification of pathological substrates of myocardium were evaluated according to EMB results. Results: Preoperative CMR showed late gadolinium enhancement in 70% of the patients, whereas EVM identified areas of low voltage in 61%. Right (73%), left (19%), or both ventricles (8%) underwent sampling. EVM proved to have sensitivity similar to CMR (74% versus 77%), with specificity being 70% and 47%, respectively. In 12 patients with EMB-proven cardiomyopathy, EVM identified pathological areas that had been undetected at CMR evaluation. Sensitivity of pooled EVM and CMR was as high as 95%. EMB analysis allowed us to reach a new diagnosis, different from the suspected clinical diagnosis, in 39% of patients. The complications rate was low, mostly related to vascular access, with no patients requiring urgent management. Conclusions: EVM proved to be a promising tool for targeted EMB because of its sensitivity and specificity for identification of myocardial pathological substrates. EVM was demonstrated to have accuracy similar to CMR. EVM and CMR together conferred a positive predictive value of 89% on EMB.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K.A Simonova ◽  
A.V Kamenev ◽  
R.B Tatarskiy ◽  
M.A Naymushin ◽  
V.S Orshanskaya ◽  
...  

Abstract Background The majority of patients have a sub-epicardial scar as a substrate for VT episodes. Purpose We sought to compare the efficacy of endocardial (ENDO) and epicardial (EPI) substrate modification in patients with ARVC. Methods 20 consecutive ARVC patients (mean age 41,4±13,8, 70% males; ICD previously implanted in 10 patients) with indications to ventricular arrhythmia ablation (RFA) were included into a prospective observational study. The EPI group consisted of 10 patients with sustained ventricular tachycardia (VT) (definite diagnosis ARVC – 8 patients; borderline – 1, possible – 1) who signed an informed consent to epicardial access. The ENDO group included 10 patients (definite diagnosis ARVC – 9 patients), five of them demonstrated sustained VT and 5 patients had frequent symptomatic premature ventricular contractions (PVC). Epicardial access in the EPI group was obtained through subxyphoid puncture. Bi- and unipolar voltage mapping of endocardial and epicardial surfaces was performed. Maps were evaluated for the presence of local abnormal ventricular electrical activity (LAVA, low-voltage areas and sites with highly fractionated or late activity). Ablation was performed at sites of LAVA on either side of the ventricular wall. In the ENDO group endocardial only ablation at LAVA sites was performed. RF energy ablation was 40W at the epicardial surface and 40–50W at the endocardial surface. Results In the EPI group endocardially mapped area of unipolar endocardial low voltage zone (LVZ) significantly prevailed over bipolar endocardial area of LVZ: 75.4 cm2 [IQR: 23.2; 211.9] vs 6.7 cm2 [IQR: 4.4; 35.5](P=0.009). Epicardial bipolar LVZ area prevailed over unipolar epicardial LVZ area: 65.3 cm2 [IQR: 55.6; 91.3] vs 6.7 cm2 [IQR: 4.4; 35.3] (P=0.005). Endocardial unipolar LVZ area in the EPI group was larger than in the ENDO group (P&gt;0,05). After ablation non-inducibility of any ventricular arrhythmia was achieved in 90% of patients in the EPI group and in 80% of cases in the ENDO group. During a mean follow-up period of 22.3±10.5 months freedom of ventricular arrhythmia recurrence was 70% in the EPI group and 100% in the control group. Conclusions Although epicardial area of abnormal potentials significantly prevails over endocardial area, endocardial unipolar mapping and higher RF ablation power allow performing successful ventricular arrhythmia treatment in the majority of ARVC patients. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document