Solar – Grid Hybrid System – A Cost Effective and Improved Renewable Energy Utilization Approach

Author(s):  
M. S. Muhit ◽  
Asif Karim
2020 ◽  
Vol 34 (27) ◽  
pp. 2050290
Author(s):  
Karan Sood ◽  
Eswaramoorthy Muthusamy

Hybrid Renewable Energy Systems (HRESs) are noteworthy devices for enhancement of reliability and performance compared to standalone systems, which are in a combination of more than one energy conversion system in a single unit. The recent developments in materials and technologies of HRESs are cost-effective and are more suitable power options for isolated rural areas. Many researchers have reported to have enhanced the performance of HRESs across India. Hence, this paper presents a comprehensive review of various HRESs that have been reported for their performance evaluation with respect to economic distance limit, techno-economic sensitivity, and optimum analysis. Also, different hybrid combinations are compared based on the factor of Net Present Cost (NPC), Cost of Energy (COE), renewable fraction, maximum renewable penetration, operational cost, and/or emission. Some case studies on various combinations of HRES for telecommunication application, rural electrification and water distillation are discussed and compared. It is concluded from the comprehensive review that there is scope for further studies on hybrid system across the country with adoption of different and newer combinations, materials and thermodynamic approaches. This paper will be helpful to researchers and scientists in understanding the state-of-the-art technologies in the hybrid system.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2947
Author(s):  
Fathalla F. Selim ◽  
Almoataz Abdelaziz ◽  
Ibrahim B. M. Taha

Clean and renewable energy sources are the preferable power system generations for the overall world. This research aims to present a very highly integrated, economic, professional, and simple construction, clean and natural resources usage of the renewable hybrid generation system. This research performs analysis, systematic representation, evaluation, and design of the hybrid proposed system—pico-hydraulic from home usage water and photovoltaic (PV)—to generate an optimal renewable generation system using a new professional control system. Applying this proposed technique in Egypt shows that the hybrid system successfully overcame Egypt’s energy crisis. Renewable energy will rise to 8.782% by increasing 7.323% (14,408.83 GWh/Y). Besides, this system increases the power supply reliability; it gives an additional emergency supply and reduces the exhausts from other generation stations (e.g., CO2). The saving from this hybrid system is very effective for; the residential sector (subscribes), which will be ranged from 9599.298 million E£/10Ys up to 86,393.68 million E£/10Ys that equals 5399.6 million $, government to use this extra generation energy to reduce the maximum loads from various stations. A practical model has been presented with results to verify the high efficiency of the proposed system that illustrates the effective performance of the used hybrid system.


2019 ◽  
Vol 9 (24) ◽  
pp. 5497
Author(s):  
Jiacheng Yang ◽  
Zhongfu Tan ◽  
Di Pu ◽  
Lei Pu ◽  
Caixia Tan ◽  
...  

With the increasing coupling of the power system and the natural gas system, the electric–gas interconnection system has become a typical form of comprehensive energy utilization. Through the energy conversion function of the coupling unit, the system can flexibly participate in the bidding for purchasing and selling energy in a power market and a natural gas market on the premise of meeting the internal demand of multiple loads. To solve the internal coordination and optimization problem and the external flexible bidding problem in the multi-energy market, this paper proposes a robust optimization model of energy purchase and sale for the electric–gas interconnection system in a multi-energy market. Firstly, the basic structure of the electric–gas interconnection system is introduced, and the steady-state model of energy flow in the system is built based on the energy hub model. Secondly, considering the uncertainty of energy prices and the output power of renewable energy units in the system, a bidding model for energy purchase and sale of the electric–gas interconnection system in multi-energy market based on the idea of robust optimization is constructed in the framework of the Nordic energy market. Finally, empirical analysis based on the actual data is carried out, and the results prove the validity and superiority of the model. In this paper, aiming at the uncertainty of energy price, a large number of scenes are generated by Latin hypercube sampling (LHS), and then a k-means algorithm is used to reduce the scenes, so as to simulate typical scenes. Aiming at the uncertainty of the output power of the renewable energy unit in the system, a cardinal uncertainty set is used to control deviation between the actual output power and predicted output power, so that the overall robustness of the model can be controlled. The proposed model can make decision-making independent of the accurate probability distribution of uncertainty factors, and is suitable for complex multi energy systems. Meanwhile, the model possesses excellent robustness, which can effectively reduce the risk of bidding loss in the process of energy purchase and sale.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 215
Author(s):  
Mitali Sarkar ◽  
Byung Do Chung

Renewable energy and environmental issues are receiving considerable attention worldwide along with the technological development of production system for reducing global warming. Due to the use of smart technologies, the rate of carbon emission and energy utilization have become very high and are directly related to different industries. This study focuses on the effect of renewable energy on the advancement of smart production with a flexible production rate as well as the reduction of carbon emission to build a sustainable smart production system. A mathematical model is developed to maximize the profit of the smart production system for economic development while considering technological and environmental issues. The model is solved analytically, and we obtain closed and quasi-closed form solutions. A numerical experiment is performed, and a comparison with previous studies indicates that our method achieves more profit than existing ones. Additionally, we highlight the major effect of renewable energy. Different graphical representations of the decision variables prove the convergence of the model. A sensitivity analysis and graphical representation are presented in this paper, and some recommendations for industry are provided by simulating this model in different scenarios.


Author(s):  
Marjan Popov ◽  
Jose Chavez ◽  
Eduardo Martinez Carrasco ◽  
Maria Teresa Villen Martinez ◽  
Samuel Borroy Vicente ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2338
Author(s):  
Sofia Agostinelli ◽  
Fabrizio Cumo ◽  
Giambattista Guidi ◽  
Claudio Tomazzoli

The research explores the potential of digital-twin-based methods and approaches aimed at achieving an intelligent optimization and automation system for energy management of a residential district through the use of three-dimensional data model integrated with Internet of Things, artificial intelligence and machine learning. The case study is focused on Rinascimento III in Rome, an area consisting of 16 eight-floor buildings with 216 apartment units powered by 70% of self-renewable energy. The combined use of integrated dynamic analysis algorithms has allowed the evaluation of different scenarios of energy efficiency intervention aimed at achieving a virtuous energy management of the complex, keeping the actual internal comfort and climate conditions. Meanwhile, the objective is also to plan and deploy a cost-effective IT (information technology) infrastructure able to provide reliable data using edge-computing paradigm. Therefore, the developed methodology led to the evaluation of the effectiveness and efficiency of integrative systems for renewable energy production from solar energy necessary to raise the threshold of self-produced energy, meeting the nZEB (near zero energy buildings) requirements.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4054 ◽  
Author(s):  
Youssef Benchaabane ◽  
Rosa Elvira Silva ◽  
Hussein Ibrahim ◽  
Adrian Ilinca ◽  
Ambrish Chandra ◽  
...  

Remote and isolated communities in Canada experience gaps in access to stable energy sources and must rely on diesel generators for heat and electricity. However, the cost and environmental impact resulting from the use of fossil fuels, especially in local energy production, heating, industrial processes and transportation are compelling reasons to support the development and deployment of renewable energy hybrid systems. This paper presents a computer model for economic analysis and risk assessment of a wind–diesel hybrid system with compressed air energy storage. The proposed model is developed from the point of view of the project investor and it includes technical, financial, risk and environmental analysis. Robustness is evaluated through sensitivity analysis. The model has been validated by comparing the results of a wind–diesel case study against those obtained using HOMER (National Renewable Energy Laboratory, Golden, CO, United States) and RETScreen (Natural Resources Canada, Government of Canada, Canada) software. The impact on economic performance of adding energy storage system in a wind–diesel hybrid system has been discussed. The obtained results demonstrate the feasibility of such hybrid system as a suitable power generator in terms of high net present value and internal rate of return, low cost of energy, as well as low risk assessment. In addition, the environmental impact is positive since less fuel is used.


2021 ◽  
Vol 11 (13) ◽  
pp. 5907
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The European Union has set targets for renewable energy utilization. Poland is a member of the EU, and its authorities support an increase in renewable energy use. The background of this study is based on the role of renewable energy sources in improving energy security and mitigation of climate change. Agricultural waste is of a significant role in bioenergy. However, there is a lack of integrated methodology for the measurement of its potential. The possibility of developing an integrated evaluation methodology for renewable energy potential and its spatial distribution was assumed as the hypothesis. The novelty of this study is the integration of two renewable energy sources: crop residues and animal husbandry waste (for biogas). To determine agricultural waste energy potential, we took into account straw requirements for stock-raising and soil conservation. The total energy potential of agricultural waste was estimated at 279.94 PJ. It can cover up to 15% of national power generation. The spatial distribution of the agricultural residue energy potential was examined. This information can be used to predict appropriate locations for biomass-based power generation facilities. The potential reduction in carbon dioxide emissions ranges from 25.7 to 33.5 Mt per year.


Sign in / Sign up

Export Citation Format

Share Document