Power electronics and drives laboratory learning environment for electric vehicles

Author(s):  
P.J. van Duijsen ◽  
D.C. Zuidervliet
2013 ◽  
Vol 16 (3-4) ◽  
pp. 447-463
Author(s):  
Benoît Sarrazin ◽  
Nicolas Rouger ◽  
Jean-Paul Ferrieux

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 654
Author(s):  
Minh-Khai Nguyen

In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical [...]


2020 ◽  
Vol 10 (14) ◽  
pp. 4988
Author(s):  
Sandra Aragon-Aviles ◽  
Ashutosh Trivedi ◽  
Sheldon S. Williamson

The need to reduce the use of fossil fuels and greenhouse gas (GHG) emissions produced by the transport sector has generated a clear increasing trend in transportation electrification and the future of energy and mobility. This paper reviews the current research trends and future work for power electronics-based solutions that support the integration of photovoltaic (PV) energy sources and smart grid with charging systems for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV). A compressive overview of isolated and non-isolated DC–DC converters and AC–DC converter topologies used to interface the PV-grid charging facilities is presented. Furthermore, this paper reviews the modes of operation of the system currently used. Finally, this paper explores the future roadmap of research for power electronics solutions related to photovoltaic (PV) systems, smart grid, and transportation electrification.


2020 ◽  
Vol 11 (2) ◽  
pp. 37 ◽  
Author(s):  
Daouda Mande ◽  
João Pedro Trovão ◽  
Minh Cao Ta

Power electronics play a fundamental role for electric transportation, renewable energy conversion and many other industrial applications. They have the ability to help achieve high efficiency and performance in power systems. However, traditional inverters such as voltage source and current source inverters present some limitations. Consequently, many research efforts have been focused on developing new power electronics converters suitable for many applications. Compared with the conventional two-stage inverter, Z-source inverter (ZSI) is a single-stage converter with lower design cost and high efficiency. It is a power electronics circuit of which the function is to convert DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. Recently, ZSIs have been widely used as a replacement for conventional two-stage inverters in the distributed generation systems. Several modifications have been carried out on ZSI to improve its performance and efficiency. This paper reviews the-state-of-art impedance source inverter main topologies and points out their applications for multisource electric vehicles. A concise review of main existing topologies is presented. The basic structural differences, advantages and limitations of each topology are illustrated. From this state-of-the-art review of impedance source inverters, the embedded quasi-Z-source inverter presents one of the promising architectures which can be used in multisource electric vehicles, with better performance and reliability. The utilization of this new topology will open the door to several development axes, with great impact on electric vehicles (EVs).


2016 ◽  
Vol 10 (3) ◽  
pp. 217-229 ◽  
Author(s):  
Ivan Subotic ◽  
Nandor Bodo ◽  
E. Levi ◽  
Boris Dumnic ◽  
Dragan Milicevic ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Boumediène Allaoua ◽  
Brahim Mebarki ◽  
Abdellah Laoufi

The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS) as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.


2013 ◽  
Vol 28 (12) ◽  
pp. 5508-5521 ◽  
Author(s):  
Omar Hegazy ◽  
Ricardo Barrero ◽  
Joeri Van Mierlo ◽  
Philippe Lataire ◽  
Noshin Omar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document