scholarly journals A Low-Carbohydrate Ketogenic Diet Combined with 6-Weeks of Crossfit Training Improves Body Composition and Performance

Author(s):  
Rachel M Gregory
Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 374
Author(s):  
Antonio Paoli ◽  
Lorenzo Cenci ◽  
PierLuigi Pompei ◽  
Nese Sahin ◽  
Antonino Bianco ◽  
...  

Background: Ketogenic diet (KD) is a nutritional approach that restricts daily carbohydrates, replacing most of the reduced energy with fat, while maintaining an adequate quantity of protein. Despite the widespread use of KD in weight loss in athletes, there are still many concerns about its use in sports requiring muscle mass accrual. Thus, the present study sought to investigate the influence of a KD in competitive natural body builders. Methods: Nineteen volunteers (27.4 ± 10.5 years) were randomly assigned to ketogenic diet (KD) or to a western diet (WD). Body composition, muscle strength and basal metabolic rate were measured before and after two months of intervention. Standard blood biochemistry, testosterone, IGF-1, brain-derived neurotrophic factor (BDNF) and inflammatory cytokines (IL6, IL1β, TNFα) were also measured. Results: Body fat significantly decreased in KD (p = 0.030); whilst lean mass increased significantly only in WD (p < 0.001). Maximal strength increased similarly in both groups. KD showed a significant decrease of blood triglycerides (p < 0.001), glucose (p = 0.001), insulin (p < 0.001) and inflammatory cytokines compared to WD whilst BDNF increased in both groups with significant greater changes in KD (p < 0.001). Conclusions: KD may be used during body building preparation for health and leaning purposes but with the caution that hypertrophic muscle response could be blunted.


Sports ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 131
Author(s):  
Amy-Lee Bowler ◽  
Remco Polman

Background: Recently, a focus has been placed on investigating the potential benefits of adherence to a ketogenic diet in enhancing body composition, physical health, psychological well-being, and performance of athletes from various sporting disciplines. As the available research is yet to be collated and analyzed in a single review, this scoping review aims to analyze and draw conclusions from the available literature that exists on the efficacy of a ketogenic diet among athletic populations. Methods: Several primary research databases and any relevant citation lists were searched to locate appropriate studies for inclusion in this scoping review. Studies that investigated the effects of adherence to a ketogenic diet (KD), defined by a carbohydrate intake of less than 5% of total energy intake, on body composition, physical health, psychological well-being, and performance among an athletic population were included in the review. From 814 articles screened, 12 were identified as meeting the inclusion criteria and were included in the final scoping review. Results: Adherence to a KD has beneficial effects on body weight and fat mass. Varying effects were identified on physical health with the diet, eliciting positive effects on fat oxidation but potentially deleterious effects on stool microbiota and iron metabolism. Conflicting results were reported regarding the effects of a KD on sporting performance. Benefits were reported regarding athlete well-being following commencement of a KD, but only after week two. Conclusions: The results of this scoping review demonstrate that there are both beneficial and detrimental effects associated with adherence to a KD among athletic populations. It is understood that further research is required to make any concrete recommendations regarding a KD to athletes.


Sports ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Wesley Kephart ◽  
Coree Pledge ◽  
Paul Roberson ◽  
Petey Mumford ◽  
Matthew Romero ◽  
...  

Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation.


Author(s):  
Hyun Suk Lee ◽  
Junga Lee

(1) Background: The purpose of this meta-analysis was to investigate the effects of combined exercise and low carbohydrate ketogenic diet interventions (CELCKD) for overweight and obese individuals. (2) Methods: Relevant studies were searched by using the MEDLINE and EMBASE databases up to October 2020. Study Inclusion and Exclusion Criteria: Inclusion criteria were reporting effects of the CELCKD for overweight and obese individuals from randomized controlled trials. Studies that did not match the inclusion criteria were excluded. The methods for CELCKD and outcomes of selected studies were extracted. The effect sizes for interventions that included cardiorespiratory fitness, body composition, fasting glucose, and lipid profiles were calculated by using the standardized mean difference statistic. (3) Results: A total of seven studies and 278 overweight and obese individuals were included. The average intervention of selected studies consisted of moderate to vigorous intensity, 4 times per week for 9.2 weeks. Participating in CELCKD interventions was decreased triglycerides (d = −0.34, CI; −0.68–−0.01, p = 0.04) and waist circumference (d = −0.74, 95% confidence interval [CI]; −1.28–−1.20, p = 0.01), while cardiovascular fitness, body composition, fasting glucose, total cholesterol, high density lipoprotein (HDL) cholesterol, and low density lipoprotein (LDL) cholesterol were not statistically different after the interventions. No adverse side effects were reported. (4) Conclusions: Participation in interventions by overweight and obese individuals had beneficial effects including decreased waist circumference and triglycerides. Longer term intervention studies with homogenous control groups may be needed.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 611
Author(s):  
Sihui Ma ◽  
Jiao Yang ◽  
Takaki Tominaga ◽  
Chunhong Liu ◽  
Katsuhiko Suzuki

The low-carbohydrate ketogenic diet (LCKD) is a dietary approach characterized by the intake of high amounts of fat, a balanced amount of protein, and low carbohydrates, which is insufficient for metabolic demands. Previous studies have shown that an LCKD alone may contribute to fatty acid oxidation capacity, along with endurance. In the present study, we combined a 10-week LCKD with an 8-week forced treadmill running program to determine whether training in conjunction with LCKD enhanced fatty acid oxidation capacity, as well as whether the maximal exercise capacity would be affected by an LCKD or training in a mice model. We found that the lipid pool and fatty acid oxidation capacity were both enhanced following the 10-week LCKD. Further, key fatty acid oxidation related genes were upregulated. In contrast, the 8-week training regimen had no effect on fatty acid and ketone body oxidation. Key genes involved in carbohydrate utilization were downregulated in the LCKD groups. However, the improved fatty acid oxidation capacity did not translate into an enhanced maximal exercise capacity. In summary, while favoring the fatty acid oxidation system, an LCKD, alone or combined with training, had no beneficial effects in our intensive exercise-evaluation model. Therefore, an LCKD may be promising to improve endurance in low- to moderate-intensity exercise, and may not be an optimal choice for those partaking in high-intensity exercise.


Sign in / Sign up

Export Citation Format

Share Document