scholarly journals The method and simulation model for the synthesis of barker-like code sequences

2021 ◽  
Vol 3 (2) ◽  
pp. 45-50
Author(s):  
I. G. Tsmots ◽  
◽  
O. Ya. Riznyk ◽  
B. I. Balych ◽  
Ch. Z. Lvovskij ◽  
...  

Noise immunity is one of the essential characteristics of modern wireless data reception/transmission systems. In wireless systems such as Wi-Fi, HiperLan, or Bluetooth, the signal is propagated by electromagnetic oscillations in the environment. However, unlike wiring systems, these oscillations are unprotected from external influences. Noise immunity is one of the essential characteristics of modern wireless data reception/transmission systems. Moreover, if several wireless systems work close enough to each other, there is a possibility of overlapping waves, which will damage the information signal. It is determined that for the tasks of control of unmanned aerial vehicles and mobile robotic complexes increasing the noise immunity of data transmission channels is an urgent problem. It has been investigated that Barker-like code sequences based on ideal ring bundles provide an increase in the power of the obtained sequences by optimizing the parameters of the ideal ring bundles used. It is determined that the increase of noise immunity during data reception and transmission is achieved by choosing the optimal ratios of the parameters of the ideal ring bundle. It is shown that the advantages of Barker-like code sequences such as the optimal ratio between the length of the sequence and its correcting ability, the ability to change the length of the sequence depending on the level of interference are widely used in modern wireless communication and telecommunications systems. The method of synthesis of Barker-like code sequences with the use of ideal ring bundles has been improved, which, by taking into account the ratios of the parameters of ideal ring bundles, provides the choice of the minimum bit code sequence that takes into account the level of interference. A simulation model of synthesis of Barker-like code sequences, noise generation, and error correction has been developed on the basis of the improved method of synthesis of Barker-like code sequences. The developed simulation model is used to study the processes of coding, decoding, detection, and correction of errors in the obtained Barker-like code sequences. It has been investigated that the use of synthesized Barker-like code sequences based on ideal ring bundles provides data recovery of damaged no more than 25 % of the bits of each codeword, and detects up to 50 % of damaged bits in each codeword. Keywords: Barker-like code sequence; ideal ring bundle; noise-tolerant coding; simulation model.

2021 ◽  
Vol 3 (1) ◽  
pp. 91-98
Author(s):  
I. G. Tsmots ◽  
◽  
O. Ya. Riznyk ◽  
Yu. I. Budaretskyi ◽  
Oliinyk M. Ya. Oliinyk M. Ya. ◽  
...  

The method of synthesis of noise-resistant barker-like code sequences with the use of ideal ring bundles has been improved. The method for fast finding of such noise-like noise-resistant code sequences, which are able to find and correct errors in accordance with the length of the obtained code sequence, has been improved. An algorithm is implemented to quickly find such noise-resistant barker-like code sequences that are able to find and correct errors in accordance with the length of the obtained code sequence. A simulation model of noise-tolerant barker-like coding with the use of ideal ring bundles has been developed. The possibility of reducing the redundancy of noise-tolerant code sequences by cutting code sequences by a certain number of bits without losing the regenerative capacity of noise-tolerant codes has been investigated. Theoretical analysis of the possibilities of this approach and its effectiveness is performed. Several series of experimental studies of the reliability of the described method on different data samples were performed and its functional efficiency was confirmed. The analysis of the obtained data and identification of key factors influencing the result is carried out. The practical software implementation of the simulation model of noise-tolerant barker-like coding for finding and correcting errors in the obtained noise-tolerant barker-like code sequences is carried out. The used methods and algorithms of data processing, the main components for message processing and their purpose are described. The possibility of reducing the redundancy of noise-tolerant code sequences by reducing the code sequences by a certain number of bits without losing the reproducibility of noise-tolerant codes has been investigated. Theoretical analysis of the possibilities of this approach and its effectiveness is performed. Several series of experimental studies of the reliability of the described method on different data samples were performed and its functional efficiency was confirmed. The analysis of the obtained results is performed and the main factors influencing the obtained result are determined. The proposed noise-tolerant barker-like code sequences have practical value, because with the help of the obtained barker-like code sequence it is quite simple and fast to find up to 50 % and correct up to 25 % of distorted characters from the length of noise-tolerant barker-like code sequence.


Author(s):  
G. N. Maltsev ◽  
A. V. Evteev

Introduction: Radio information transmission systems with noise-like phase-shift keyed signals based on pseudo-random sequences have potential noise immunity provided by accurately tracking the delay of the received signal in the correlation receiver. When working with moving objects, the delay of the received signal varies continuously, and the reception quality for noise-like phase-shifted signals highly depends on the synchronization system operation and on the accuracy of estimating the received signal delay by the tracking system. To ensure the required signal reception quality, it is necessary to provide an informed choice of tracking system parameters, taking into account their effects, which are the random and systematic components of the delay tracking error, on the selected noise immunity indicator.Purpose: Analyzing how the errors in tracking the delay of a received phase-shift keyed signal based on a pseudorandom sequence by the synchronization system of a radio information transmission system can affect the probability of erroneous reception of an information symbol.Results: The calculation method was used to obtain families of dependencies of the probability of erroneous reception of an information symbol on the signal-noise ratio (SNR), and the values of the random and systematic components of the delay tracking error which are normalized to the capture band of the correlation receiver. It has been shown that at a fixed SNR, the values of the random and systematic components of the delay tracking error are critical for the erroneous reception probability. In all the cases discussed, all the dependencies are characterized by a slow change of the erroneous reception probability while the synchronization errors within the area of small SNR have fixed values. As the SNR value grows, the erroneous reception probability rapidly drops. To ensure the specified signal reception quality and the reliability of the selection of information symbols and messages in a radio information transmission system with noise-like phase-manipulated signals, its synchronization system requires a joint selection of the tracking system parameters, taking into account the limitations imposed by the operating conditions and technical implementation features.Practical relevance: The obtained results can be used in noise immunity analysis of radio information transmission systems with noise-like phase-shift keyed signals in a wide range of communication conditions, and in providing technical solutions for synchronization systems ensuring the required quality of signal reception.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Filip Čertík ◽  
Rastislav Róka

This paper presents a possible simulation of negative effects in the optical transmission medium and an analysis for the utilization of different signal processing techniques at the optical signal transmission. An attention is focused on the high data rate signal transmission in the optical fiber influenced by linear and nonlinear environmental effects presented by the prepared simulation model. The analysis includes possible utilization of OOK, BPSK, DBPSK, BFSK, QPSK, DQPSK, 8PSK, and 16QAM modulation techniques together with RS, BCH, and LDPC encoding techniques for the signal transmission in the optical fiber. Moreover, the prepared simulation model is compared with real optical transmission systems. In the final part, a comparison of the selected modulation techniques with different encoding techniques and their implementation in real transmission systems is shown.


2021 ◽  
Vol 6 (3(36)) ◽  
pp. 13-17
Author(s):  
Yuriy Borisovich Nechaev ◽  
Ilya Vladimirovich Peshkov ◽  
Natalia Alexandrovna Fortunova ◽  
Irina Nikolaevna Zaitseva

The article describes a simulation model of a digital antenna array, which can be used in broadband signal transmission systems under the influence of broadband interference. The initial information signal has a speed of 19200 bit / s for the I and Q stream. It is proved that the signal level after applying the diagramming of a digital antenna array is four times higher than the signal level without its use, which confirms the advantage of digital radio systems.


2011 ◽  
Vol 57 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Sebastian Aust ◽  
Andreas Ahrens ◽  
César Benavente-Peces

Modulation-Mode Assignment in SVD-Aided Downlink Multiuser MIMO-OFDM SystemsMulticarrier transmission such as OFDM (orthogonal frequency division multiplexing) is an established technique for radio transmission systems and it can be considered as a promising approach for next generation wireless systems. However, in order to comply with the demand on increasing available data rates in particular in wireless technologies, systems with multiple transmit and receive antennas, also called MIMO (multiple-input multiple-output) systems, have become indispensable for future generations of wireless systems. Due to the strongly increasing demand in high-data rate transmission systems, frequency non-selective MIMO links have reached a state of maturity and frequency selective MIMO links are in the focus of interest. In this field, the combination of MIMO transmission and OFDM can be considered as an essential part of fulfilling the requirements of future generations of wireless systems. However, single-user scenarios have reached a state of maturity. By contrast multiple users' scenarios require substantial further research, where in comparison to ZF (zero-forcing) multiuser transmission techniques, the individual user's channel characteristics are taken into consideration in this contribution. The performed joint optimization of the number of activated MIMO layers and the number of transmitted bits per subcarrier shows that not necessarily all user-specific MIMO layers per subcarrier have to be activated in order to minimize the overall BER under the constraint of a given fixed data throughput.


This paper proposes an open loop difference amplifier with long channel keeper technique for domino logic circuits implemented as wide fan in OR gate. Currently OR gates suffer from high capacitive loading and delays due to such loading. The proposed design uses single stage of comparison and dual keeper arrangement to generate and hold the output logic state. This technique effectively reduces the high input loading from capacitance and manages the power consumption by switching based on the generated difference voltage. As compared to standard footerless domino SFLD, the proposed design OLDA has shown to reduce power consumption by 42% in 64 bit configuration. It has increased average noise immunity by 2.03 times, while maintaining same speed as compared to SFLD. All simulations are done in CMOS technology with 90nm PTM LP models


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
L. A. Antiufrieva ◽  
◽  
K. K. Iansitov ◽  
A. V. Dvorkovich

The work is devoted to expanding the noise immunity of the DVB-S2X standard and the VL-SNR mode physical layer synchronization algorithms. The article proposes a signal-code sequence that increases the noise immunity of the signal, operating down to −11 dB signal-to-noise ratio, and a synchronization system for it.


Sign in / Sign up

Export Citation Format

Share Document