scholarly journals Data Analysis of Hybrid Principal Component for Rural Land Circulation Management based on Gray Relation Algorithmic Models

Author(s):  
Zhongbo Wang
1997 ◽  
Vol 12 (4) ◽  
pp. 276-281 ◽  
Author(s):  
Gunnar Forsgren ◽  
Joana Sjöström

Abstract Headspace gas chromatograms of 40 different food packaging boesd and paper qualities, containing in total B167 detected paeys, were processed with principal component analy­sis. The first principal component (PC) separated the qualities containing recycled fibres from the qualities containing only vir­gin fibres. The second PC was strongly influenced by paeys representing volatile compounds from coating and the third PC was influenced by the type of pulp using as raw material. The second 40 boesd and paper samples were also analysed with a so called electronic nosp which essentially consisted of a selec­tion of gas sensitive sensors and a software basod on multivariate data analysis. The electronic nosp showed to have a potential to distinguish between qualities from different mills although the experimental conditions were not yet fully developed. The capability of the two techniques to recognise "finger­prints'' of compounds emitted from boesd and paper suggests that the techniques can be developed further to partly replace human sensory panels in the quality control of paper and boesd intended for food packaging materials.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1393
Author(s):  
Ralitsa Robeva ◽  
Miroslava Nedyalkova ◽  
Georgi Kirilov ◽  
Atanaska Elenkova ◽  
Sabina Zacharieva ◽  
...  

Catecholamines are physiological regulators of carbohydrate and lipid metabolism during stress, but their chronic influence on metabolic changes in obese patients is still not clarified. The present study aimed to establish the associations between the catecholamine metabolites and metabolic syndrome (MS) components in obese women as well as to reveal the possible hidden subgroups of patients through hierarchical cluster analysis and principal component analysis. The 24-h urine excretion of metanephrine and normetanephrine was investigated in 150 obese women (54 non diabetic without MS, 70 non-diabetic with MS and 26 with type 2 diabetes). The interrelations between carbohydrate disturbances, metabolic syndrome components and stress response hormones were studied. Exploratory data analysis was used to determine different patterns of similarities among the patients. Normetanephrine concentrations were significantly increased in postmenopausal patients and in women with morbid obesity, type 2 diabetes, and hypertension but not with prediabetes. Both metanephrine and normetanephrine levels were positively associated with glucose concentrations one hour after glucose load irrespectively of the insulin levels. The exploratory data analysis showed different risk subgroups among the investigated obese women. The development of predictive tools that include not only traditional metabolic risk factors, but also markers of stress response systems might help for specific risk estimation in obesity patients.


Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Michael Li ◽  
Santoso Wibowo ◽  
Wei Li ◽  
Lily D. Li

Extreme learning machine (ELM) is a popular randomization-based learning algorithm that provides a fast solution for many regression and classification problems. In this article, we present a method based on ELM for solving the spectral data analysis problem, which essentially is a class of inverse problems. It requires determining the structural parameters of a physical sample from the given spectroscopic curves. We proposed that the unknown target inverse function is approximated by an ELM through adding a linear neuron to correct the localized effect aroused by Gaussian basis functions. Unlike the conventional methods involving intensive numerical computations, under the new conceptual framework, the task of performing spectral data analysis becomes a learning task from data. As spectral data are typical high-dimensional data, the dimensionality reduction technique of principal component analysis (PCA) is applied to reduce the dimension of the dataset to ensure convergence. The proposed conceptual framework is illustrated using a set of simulated Rutherford backscattering spectra. The results have shown the proposed method can achieve prediction inaccuracies of less than 1%, which outperform the predictions from the multi-layer perceptron and numerical-based techniques. The presented method could be implemented as application software for real-time spectral data analysis by integrating it into a spectroscopic data collection system.


1996 ◽  
Vol 50 (12) ◽  
pp. 1541-1544 ◽  
Author(s):  
Hans-René Bjørsvik

A method of combining spectroscopy and multivariate data analysis for obtaining quantitative information on how a reaction proceeds is presented. The method is an approach for the explorative synthetic organic laboratory rather than the analytical chemistry laboratory. The method implements near-infrared spectroscopy with an optical fiber transreflectance probe as instrumentation. The data analysis consists of decomposition of the spectral data, which are recorded during the course of a reaction by using principal component analysis to obtain latent variables, scores, and loading. From the scores and the corresponding reaction time, it is possible to obtain a reaction profile. This reaction profile can easily be recalculated to obtain the concentration profile over time. This calculation is based on only two quantitative measurements, which can be (1) measurement from the work-up of the reaction or (2) chromatographic analysis from two withdrawn samples during the reaction. The method is applied to the synthesis of 3-amino-propan-1,2-diol.


2018 ◽  
Vol 8 (10) ◽  
pp. 1766 ◽  
Author(s):  
Arthur Leroy ◽  
Andy MARC ◽  
Olivier DUPAS ◽  
Jean Lionel REY ◽  
Servane Gey

Many data collected in sport science come from time dependent phenomenon. This article focuses on Functional Data Analysis (FDA), which study longitudinal data by modelling them as continuous functions. After a brief review of several FDA methods, some useful practical tools such as Functional Principal Component Analysis (FPCA) or functional clustering algorithms are presented and compared on simulated data. Finally, the problem of the detection of promising young swimmers is addressed through a curve clustering procedure on a real data set of performance progression curves. This study reveals that the fastest improvement of young swimmers generally appears before 16 years old. Moreover, several patterns of improvement are identified and the functional clustering procedure provides a useful detection tool.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 891 ◽  
Author(s):  
Constantin Apetrei ◽  
Catalina Iticescu ◽  
Lucian Puiu Georgescu

The present paper describes the development of a multisensory system for the analysis of the natural water in the Danube, water collected in the neighboring area of Galati City. The multisensory system consists of a sensor array made up of six screen-printed sensors based on electroactive compounds (Cobalt phthalocyanine, Meldola’s Blue, Prussian Blue) and nanomaterials (Multi-Walled Carbon Nanotubes, Multi-Walled Graphene, Gold Nanoparticles). The measurements with the sensors array were performed by using cyclic voltammetry. The cyclic voltammograms recorded in the Danube natural water show redox processes related to the electrochemical activity of the compounds in the water samples or of the electro-active compounds in the sensors detector element. These processes are strongly influenced by the composition and physico-chemical properties of the water samples, such as the ionic strength or the pH. The multivariate data analysis was performed by using the principal component analysis (PCA) and the discriminant factor analysis (DFA), the water samples being discriminated according to the collection point. In order to confirm the observed classes, the partial least squares discriminant analysis (PLS-DA) method was used. The classification of the samples according to the collection point could be made accurately and with very few errors. The correlations established between the voltammetric data and the results of the physico-chemical analyses by using the PLS1 method were very good, the correlation coefficients exceeding 0.9. Moreover, the predictive capacity of the multisensory system is very good, the differences between the measured and the predicted values being less than 3%. The multisensory system based on voltammetric sensors and on multivariate data analysis methods is a viable and useful tool for natural water analysis.


Sign in / Sign up

Export Citation Format

Share Document