scholarly journals Effect of body movements in the venous blood flow and lymphatic circulation

2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Eduardo Pinto-Ferreira

The studies of ballistocardiography about the effect of cardiovascular activity in body motion raised the author interest in the research of the influence of body movements in the circulatory flow in venous and lymphatic vessels. These effects follow Sir Isaac Newton laws. With the body movement, the one-way valve structure of these vessels will cause a mobilization of venous blood and lymph to the proximal side. A model was built to demonstrate the effect of oscillatory movement in a liquid flow in a system of one-way valve. There was a rise of the liquid with difference in level that ranged from 9 cm up to 34 cm, depending on the amplitude and frequency. The model tried to mimic a segment of vein with its valve, and evaluate the effectiveness of oscillatory movements in the progression of the liquid, In a preliminary study, to assess the effect of oscillatory movements on leg swelling, this movements was applied in a clinical cases. There was regression of the oedema and circumference on the leg, by oscillatory movements, that was correlated with increase in lymphatic and venous drainage. Venous stasis is a predisposing factor of venous thromboembolism. How we extrapolate from the experimental model, the oscillatory movements of the legs improving venous circulation may contribute to the prophylaxis of venous thromboembolism. In conclusion, it is of interest to study its application in some situations of venous thromboembolism risk.

2007 ◽  
Vol 97 (4) ◽  
pp. 2976-2991 ◽  
Author(s):  
Meaghan K. McCluskey ◽  
Kathleen E. Cullen

Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets while they sat upright in a standard primate chair and assumed a more natural sitting posture in a custom-designed chair. In both postures, gaze shifts were characterized by the sequential onset of eye, head, and body movements, which could be described by predictable relationships. Body motion made a small but significant contribution to gaze shifts that were ≥40° in amplitude. Furthermore, as gaze shift amplitude increased (40–120°), body contribution and velocity increased systematically. In contrast, peak eye and head velocities plateaued at velocities of ∼250–300°/s, and the rotation of the eye-in-orbit and head-on-body remained well within the physical limits of ocular and neck motility during large gaze shifts, saturating at ∼35 and 60°, respectively. Gaze shifts initiated with the eye more contralateral in the orbit were accompanied by smaller body as well as head movement amplitudes and velocities were greater when monkeys were seated in the more natural body posture. Taken together, our findings show that body movement makes a predictable contribution to gaze shifts that is systematically influenced by factors such as orbital position and posture. We conclude that body movements are part of a coordinated series of motor events that are used to voluntarily reorient gaze and that these movements can be significant even in a typical laboratory setting. Our results emphasize the need for caution in the interpretation of data from neurophysiological studies of the control of saccadic eye movements and/or eye-head gaze shifts because single neurons can code motor commands to move the body as well as the head and eyes.


Author(s):  
Abinand Manorama ◽  
Tamara Reid Bush

Pressure ulcers have been a concern in healthcare settings, with more than 50% of bedridden or wheelchair-bound patients being affected [1]. Pressure ulcers typically occur on a region of the body that experiences forces from an external structure (e.g. bed, wheelchair). Researchers believe that such forces cause a decrease in blood flow, which results in tissue necrosis, causing pressure ulcers [2].


2004 ◽  
Vol 20 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Jean-Thomas Aubert ◽  
Christian Ribreau

Blood flows toward the heart through collapsible vessels, the veins. The equations of flow in collapsible tubes in motion show a strong dependence on body forces resulting from gravity and acceleration. This paper analyzes the contribution of body forces to venous blood flow during walking on level ground. It combines the biomechanics of gait and theory of collapsible tubes to point out that body forces due to gravity and limb acceleration cannot be overlooked when considering the determinants of venous blood flow during locomotion. The study involved the development of a kinematic model of the limb as a multi-pendulum arrangement in which the limb segments undergo angular displacements. Angular velocities and accelerations were determined and the body forces were calculated during various phases of the gait cycle. A vascular model of the leg's major venous system was also constructed, and the accelerations due to body and gravity forces were calculated in specific venous segments, using the data from the kinematic model. The results showed there were large, fast variations in the axial component (Gx–Mx) of the body forces in veins between the hip and the ankle. Acceleration peaks down to –2G were obtained at normal locomotion. At fast locomotion, a distal vein in the shank displayed values of (Gx–Mx)/G equal to –3.2. Given the down-to-up orientation of the x-axis, the axial component Mx was usually positive in the axial veins, and Mx could shift from positive to negative during the gait cycle in the popliteal vein and the dorsal venous arch.


Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 58 ◽  
Author(s):  
Qiancheng Liang ◽  
Lisheng Xu ◽  
Nan Bao ◽  
Lin Qi ◽  
Jingjing Shi ◽  
...  

With the rapid increase in the development of miniaturized sensors and embedded devices for vital signs monitoring, personal physiological signal monitoring devices are becoming popular. However, physiological monitoring devices which are worn on the body normally affect the daily activities of people. This problem can be avoided by using a non-contact measuring device like the Doppler radar system, which is more convenient, is private compared to video monitoring, infrared monitoring and other non-contact methods. Additionally real-time physiological monitoring with the Doppler radar system can also obtain signal changes caused by motion changes. As a result, the Doppler radar system not only obtains the information of respiratory and cardiac signals, but also obtains information about body movement. The relevant RF technology could eliminate some interference from body motion with a small amplitude. However, the motion recognition method can also be used to classify related body motion signals. In this paper, a vital sign and body movement monitoring system worked at 2.4 GHz was proposed. It can measure various physiological signs of the human body in a non-contact manner. The accuracy of the non-contact physiological signal monitoring system was analyzed. First, the working distance of the system was tested. Then, the algorithm of mining collective motion signal was classified, and the accuracy was 88%, which could be further improved in the system. In addition, the mean absolute error values of heart rate and respiratory rate were 0.8 beats/min and 3.5 beats/min, respectively, and the reliability of the system was verified by comparing the respiratory waveforms with the contact equipment at different distances.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sebastian Voicu ◽  
Chahinez Ketfi ◽  
Alain Stépanian ◽  
Benjamin G. Chousterman ◽  
Nassim Mohamedi ◽  
...  

Coronavirus disease 2019 (COVID-19) predisposes to deep vein thrombosis (DVT) and pulmonary embolism (PE) particularly in mechanically ventilated adults with severe pneumonia. The extremely high prevalence of DVT in the COVID-19 patients hospitalized in the intensive care unit (ICU) has been established between 25 and 84% based on studies including systematic duplex ultrasound of the lower limbs when prophylactic anticoagulation was systematically administrated. DVT prevalence has been shown to be markedly higher than in mechanically ventilated influenza patients (6–8%). Unusually high inflammatory and prothrombotic phenotype represents a striking feature of COVID-19 patients, as reflected by markedly elevated reactive protein C, fibrinogen, interleukin 6, von Willebrand factor, and factor VIII. Moreover, in critically ill patients, venous stasis has been associated with the prothrombotic phenotype attributed to COVID-19, which increases the risk of thrombosis. Venous stasis results among others from immobilization under muscular paralysis, mechanical ventilation with high positive end-expiratory pressure, and pulmonary microvascular network injuries or occlusions. Venous return to the heart is subsequently decreased with increase in central and peripheral venous pressures, marked proximal and distal veins dilation, and drops in venous blood flow velocities, leading to a spontaneous contrast “sludge pattern” in veins considered as prothrombotic. Together with endothelial lesions and hypercoagulability status, venous stasis completes the Virchow triad and considerably increases the prevalence of DVT and PE in critically ill COVID-19 patients, therefore raising questions regarding the optimal doses for thromboprophylaxis during ICU stay.


Author(s):  
Vladimir Usachev ◽  
Pierre-Marie Gagey

Background: In the 90s, Inamura et al. have drawn our attention to the role played by the postural system in the return venous circulation, thanks to plethysmographic recordings which gave free rein to the imagination of the authors to suppose the functioning mechanisms of this venous pump. In 2010, two anatomists, Uhl & Gillot, transformed our representation of the venous network and made assumptions about the functioning of the venous pump. Objective/ Methods: The aim of this work is to verify these hypotheses by scanning the venous blood flow at the level of the sinus soleus and the popliteal vein during various posture-kinetic situations. Conclusion: These studies fully confirm the hypotheses. It is therefore likely that the postural system intervenes not only in the phenomena of stabilisation of the body, but also in the back venous circulation.


2017 ◽  
Vol 29 (2) ◽  
pp. 327-337 ◽  
Author(s):  
Yutaka Matsuura ◽  
◽  
Hieyong Jeong ◽  
Kenji Yamada ◽  
Kenji Watabe ◽  
...  

[abstFig src='/00290002/06.jpg' width='300' text='Respiratory rate from simulator and Kinect' ]<span class=”bold”>Background and purpose:</span>It has been considered that sleep-disordered breathing disorders, such as sleep apnea syndrome (SAS), cause an increase in the risk of cardiovascular disease or traffic accident risk, and thus early detection of SAS is important. It has been also important for medical workers at clinical sites to quantitatively evaluate the respiratory condition of hospitalized patients who are asleep in a simple method. A noncontact-type system was proposed to monitor the respiratory condition of sleeping patients and minimized patient-related stress such that medical workers could use the system for SAS screening and perform a preliminary check prior to definite diagnosis.<span class=”bold”>Method:</span>The system included Microsoft Kinect™ for windows® (Kinect), a tripod, and a PC. A depth sensor of Kinect was used to measure movement in the thorax motion. Data obtained from periodic waveforms were divided with the intervals of 1 min, and the number of peaks was used to obtain the respiratory rate. Additionally, a frequency analysis was performed to calculate the respiratory frequency from a frequency at which the maximum amplitude was observed. In Experiment 1), a METI-man® PatientSimulator (CAE healthcare) (simulator) was used to study the respiratory rate and frequency calculated from the Kinect data by gradually changing the designated respiratory rate. In Experiment 2), the respiratory condition of four sleeping subjects was monitored to calculate their respiratory rate and frequencies. Furthermore, a video camera was used to confirm periodic waveforms and spectrum features of body movements during sleep.<span class=”bold”>Results:</span>In Experiment 1), the results indicated that both the respiratory rate and frequency corresponded to the designated respiratory rate in each time zone. In Experiment 2), the results indicated that the respiratory rate of examines 1, 2, 3, and 4 corresponded to 12.79±2.44 times/min (average ± standard deviation), 16.46±4.33 times/min, 28.24±2.79 times/min, and 13.05±2.64 times/min, respectively. The findings also indicated that the frequency of examines 1, 2, 3, and 4 corresponded to 0.20±0.04 Hz, 0.26±0.06 Hz, 0.45±0.12 Hz, and 0.22±0.06 Hz, respectively. The periodic waveforms and amplitude spectra were enhanced with respect to body movements although regular waveform data were obtained after the body movement occurred.<span class=”bold”>Discussions:</span>The results indicated that body movement and posture temporarily affected monitoring of the system. However, the findings also revealed that it was possible to calculate the respiratory rate and frequency, and thus it was considered that the system was useful for monitoring the respiration confirm with the non-contact or SAS screening of patients in clinical site.


2015 ◽  
Vol 30 (9) ◽  
pp. 589-602 ◽  
Author(s):  
S Hajibandeh ◽  
S Hajibandeh ◽  
GA Antoniou ◽  
JRH Scurr ◽  
F Torella

Objective To evaluate the effect of neuromuscular electrical stimulation on lower limb venous blood flow and its role in thromboprophylaxis. Method Systematic review of randomised and non-randomised studies evaluating neuromuscular electrical stimulation, and reporting one or more of the following outcomes: incidence of venous thromboembolism, venous blood flow and discomfort profile. Results Twenty-one articles were identified. Review of these articles showed that neuromuscular electrical stimulation increases venous blood flow and is generally associated with an acceptable tolerability, potentially leading to good patient compliance. Ten comparative studies reported DVT incidence, ranging from 2% to 50% with neuromuscular electrical stimulation and 6% to 47.1% in controls. There were significant differences, among included studies, in terms of patient population, neuromuscular electrical stimulation delivery, diagnosis of venous thromboembolism and blood flow measurements. Conclusion Neuromuscular electrical stimulation increases venous blood flow and is well tolerated, but current evidence does not support a role for neuromuscular electrical stimulation in thromboprophylaxis. Randomised controlled trials are required to investigate the clinical utility of neuromuscular electrical stimulation in this setting.


1961 ◽  
Vol 16 (1) ◽  
pp. 30-34 ◽  
Author(s):  
M. E. Dixon ◽  
P. B. Stewart ◽  
F. C. Mills ◽  
C. J. Varvis ◽  
D. V. Bates

The respiratory consequences of a number of passive body movements have been investigated in a group of normal subjects. It has been shown that certain types of torso movement produce hyperventilation in excess of metabolic demand, with a consequent lowering of end-tidal CO2 tension. Passive pedal motion of the legs did not produce this type of hyperventilation and concealed it if performed in conjunction with the other movements. The mechanism for the passive hyperventilation is not understood, since the respiratory rate did not appear to be rhythmically linked to the body movement, and certain maneuvers in the experiments did not affect the results. The level of hyperventilation that has been demonstrated is considered to be adequate to explain the phenomenon of hyperventilation which has been recorded in pilots flying high-velocity low-level aircraft, who may be subjected to considerable jolting while sitting in an upright position. Submitted on May 10, 1960


2021 ◽  
Author(s):  
Theresia Tri Kinasih Lestari

In general, dance and movement is a performance that is shown in the staging event. Dance is an activitythat uses body movements where muscles throughout the body rub against each other to be able to make abeautiful body movement, and also the need for the right rhythm and beats to make movements in dancedance to be beautiful, but what if motion and dance are used in the world of counseling , through musicalaccompaniment in accordance with dance movements that can make the counselee become more relaxed,both mentally, physically, and mentally. The purpose of writing this paper is to provide newknowledge to the general public about music in counseling sessions.


Sign in / Sign up

Export Citation Format

Share Document