scholarly journals Comparing the results of numerical modeling of slope stability in the Plaxis program with analytical calculations using the simplified method

Author(s):  
V. V. Konyushkov ◽  

The article purposes some ways of simplifying the analytical method for calculating slope stability. The simplified method is based on the well-known classical solution for calculating the stability of slopes with a round-cylindrical slickensided surface. The proposed method does not require significant labor costs in time and allows taking into account various external loads and their combinations on the slope. There have been performed multivariate comparative calculations of slope stability in the Plaxis program and using a simplified analytical method. In the design schemes, there were considered dispersed soils such as sands, sandy loams, loams and clays with different properties and the most common slope angles used in construction practice. The performed analysis of calculations has shown a good convergence of the numerical modeling results with the results of analytical calculations. This method is recommended for preliminary express calculations or for additional alternative verification of slope stability.

2021 ◽  
Vol 13 (7) ◽  
pp. 4046
Author(s):  
Vittoria Capobianco ◽  
Kate Robinson ◽  
Bjørn Kalsnes ◽  
Christina Ekeheien ◽  
Øyvind Høydal

Vegetation can be used as a nature-based solution (NBS) to restore rivers and mitigate water-triggered processes along streambanks. Roots are well known to improve the overall stability of slopes through hydro-mechanical reinforcement within the rooted zone. Vegetation-based solutions require the selection of species that are most suitable for specific locations, and they are aimed at restoring the natural state and function of river systems in support of biodiversity, flood management, and landscape development. Selecting a combination of different species along different zones of the riverbank can improve the conditions for the river system with regard to biodiversity and stability. Therefore, more studies are needed to investigate how the combination of a variety of different plant species can improve the stability of the riverbank. This paper presents a methodological approach for slope stability modeling including vegetation as well as the results obtained from a series of slope stability calculations adopting the proposed methodology. The analyses were carried out for critical shallow (≤3 m deep) shear planes of ideal benchmark slopes covered with four different plant combinations—(i) only grass, (ii) grass and shrubs, (iii) only trees, and (iv) trees, shrubs, and grass—for species typically found along streams in southeastern Norway. In this desk study, two types of tree species were selected, namely Norway spruce (Picea abies) and Downy birch (Betula pubescens). The Goat willow (Salix caprea) was selected as a shrub, while a common mixed-grass was chosen as grass. Vegetation features were obtained from the literature. The methodology was used for two main cases: (1) considering only the mechanical contribution of vegetation and (2) considering both the hydrological and mechanical reinforcement of vegetation. The main outcome of the numerical modeling showed that the purely mechanical contribution of vegetation to slope stability could not be decoupled from the hydrological reinforcement in order to have a realistic assessment of the roots improvement to the stability. The most critical shear surfaces occurred below the rooted zone in all cases, and the best performance was obtained using the combinations including trees. Considering the typical climate conditions in Norway, the hydro-mechanical reinforcement was most effective in the spring and for combinations including low height vegetation (i.e., grass and shrubs). The study concludes that a mixed combination of vegetation (trees, shrubs, and grass) is the most suitable for reaching the highest hydro-mechanical reinforcement of streambanks, together with erosion protection and boosting the ecosystem biodiversity. The current study can help practitioners determine which vegetation cover combination is appropriate for improving the current stability of a streambank with restoration practices.


2020 ◽  
pp. 65-75
Author(s):  
Liudmyla Skochko ◽  
Viktor Nosenko ◽  
Vasyl Pidlutskyi ◽  
Oleksandr Gavryliuk

The stability of the slope in the existing and design provisions is investigated, the constructive decisions of retaining walls on protection of the territory of construction of a residential complex in a zone of a slope are substantiated. The stability of the slope when using rational landslide structures is estimated. The results of the calculation of the slope stability for five characteristic sections on the basis of engineering-geological survey are analyzed. For each of the given sections the finite-element scheme according to the last data on change of a relief is created. The slope was formed artificially by filling the existing ravine with construction debris from the demolition of old houses and from the excavation of ditches for the first houses of the complex. Five sections along the slope are considered and its stability in the natural state and design positions is determined. Also the constructive decisions of retaining walls on protection of the territory of construction of a residential complex as along the slope there are bulk soils with various difference of heights are substantiated. This requires a separate approach to the choice of parameters of retaining walls, namely the dimensions of the piles and their mutual placement, as well as the choice of the angle of the bulk soil along the slope. The calculations were performed using numerical simulation of the stress-strain state of the system "slope soils-retaining wall" using the finite element method. An elastic-plastic model of soil deformation with a change in soil parameters (deformation module) depending on the level of stresses in the soil is adopted. Hardening soil model (HSM) used. Calculations of slope stability involve taking into account the technological sequence of erection of retaining walls and modeling of the phased development of the pit. The simulation was performed in several stages: Stage 1 - determination of stresses from the own shaft, Stage 2 - assessment of slope stability before construction, Stage 3 - installation of retaining wall piles, Stage 4 - assessment of slope stability after landslides. Based on these studies, practical recommendations were developed for the design of each section of the retaining wall in accordance with the characteristic cross-sections.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Wenchen Fan ◽  
Ping Cao ◽  
Ke Zhang ◽  
Kaihui Li ◽  
Chong Chen

Chengmenshan copper mine, located at Jiujiang city in the Jiangxi Province, is a rarely lakeside open-pit mine in China. Since the open-pit is very close to Sai Lake, the seasonally changed water level and the distance between lake and slope have great influence to the stability of open-pit slope. Based on the drill data and geological sections, a numerical model of the slope is built. With the fluid-mechanical interaction associated, the stability of the slopes is numerically analyzed, in which different lake water levels and lake-slope distances are taken into consideration. The comparative analysis shows that a larger lake-slope distance can promise better slope stability and weaken the sensitivity of slope stability to water. The stability of slopes with different heights is analyzed to find that the stability weakens and the sensitivity is enhanced with the height increasing. To the most serious situation, the slope height and the lake water level being 238 m and 17.2 m, respectively, theFsvalue equals 1.18945 which is extremely closed to the allowable safety factor of 1.20 for slope design. According to the minimumFsfor slope design, the minimum distance between lake and open-pit slope is found to be 60 m.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 417 ◽  
Author(s):  
Abbate ◽  
Longoni ◽  
Ivanov ◽  
Papini

Landslides over steep slopes, floods along rivers plains and debris flows across valleys are hydrogeological phenomena typical for mountain regions. Such events are generally triggered by rainfall, which can have large variability in terms of both its intensity and volume. Furthermore, terrain predisposition and the presence of some disturbances, such as wildfires, can have an adverse effect on the potential risk. Modelling the complex interaction between these components is not a simple task and cannot always be carried out using instability thresholds that only take into account the characteristics of the rainfall events. In some particular cases, external factors can modify the existing delicate equilibrium on the basis of which stability thresholds are defined. In particular, events such as wildfires can cause the removal of vegetation coverage and the modification of the soil terrain properties. Therefore, wildfires can effectively reduce the infiltration capacity of the terrain and modify evapotranspiration. As a result, key factors for slope stability, such as the trend of the degree of saturation of the terrain, can be strongly modified. Thus, studying the role of wildfire effects on the terrain’s hydrological balance is fundamental to establish the critical conditions that can trigger potential slope failures (i.e., shallow landslides and possible subsequent debris flows). In this work, we investigate the consequences of wildfire on the stability of slopes through a hydrological model that takes into account the wildfire effects and compare the results to the current stability thresholds. Two case studies in the Ardenno (IT) and Ronco sopra Ascona (CH) municipalities were chosen for model testing. The aim of this paper is to propose a quantitative analysis of the two cases studies, taking into account the role of fire in the slope stability assessment. The results indicate how the post-fire circumstances strongly modify the ability of the terrain to absorb rainfall water. This effect results in a persistently drier terrain until a corner point is reached, after which the stability of the slope could be undermined by a rainfall event of negligible intensity.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 310
Author(s):  
Alessandra Francini ◽  
Stefania Toscano ◽  
Daniela Romano ◽  
Francesco Ferrini ◽  
Antonio Ferrante

Plants can reduce erosion during heavy raining periods and improve slope stability through their root morphology, development, biomass, and architecture. Heavy rains can increase erosion, becoming a danger for traffic and people who live around slopes. The control of slope stability is often required in urban and peri-urban environments, and for this reason ornamental species can be appropriately selected for a dual use, namely improving the aesthetical value of green areas along the urban and suburban roads and mitigating the erosion effects. The species used must have good tolerance to abiotic stresses, such as high and low temperature, drought, pollution and nutrient deficiency. Otherwise, their limited growth can reduce their beneficial effects. Ornamental plants that can be used for reducing the erosion of slopes must be in full growth during periods with a higher incidence of rains and must also be compatible with the temperature ranges in different seasons. These species can be also selected for their ability to avoid erosion and enhance the stability of slopes. In this review, the biological contribution of plants for improving slope stability has been reported and discussed with a special focus attention on the Mediterranean environment. Particular emphasis has been placed on root biomass changes and root growth parameters, considering their role as potential markers for selecting suitable plants to be used for enhancing slope stability. A brief description of planting on slopes and root growth has been also considered and discussed.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Birgit Terhorst ◽  
Bodo Damm

The Rhenodanubian Flysch of the northern Vienna Forest is composed of various layers of sandstones, marly shales, calcareous marls, and clay shists, which are covered by Quaternary periglacial cover beds and loess deposits. This area at the margin of the eastern Alps represents an undulating landscape of the Austrian low-mountain regions. The Vienna Forest Flysch region is considered to be susceptible to landslides. Both petrography of the bedrock and soil mechanical properties of the Quaternary sediments control the current slope dynamics in the study area. In a temporal context it is evident that the stability of slopes exceeding 27∘ is controlled by a succession of several steps of slope formation. On the basis of field surveys, laboratory analyses, and slope stability modelling, results from investigations on recent landslides demonstrate five different phases of slope formation. In general, after passing these phases the stability of studied slopes is increased, due to the different soil mechanical properties of the potential sliding masses.


2013 ◽  
Vol 3 (1) ◽  
pp. 71-80
Author(s):  
A. A ARSLANOV ◽  
R. F MUSTAFIN

The authors suggest a method for defining the share of roots in the volume of ground layer as a basis for calculating the stability of slopes covered with tree-bush vegetation.


1980 ◽  
Vol 17 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Jean Lafleur ◽  
Guy Lefebvre

Slope stability analyses in terms of effective stresses are most often based on hypothetical conditions of pore pressure. It is generally assumed that the flow occurs parallel to the slope or even that the conditions are hydrostatic. In fact, in situ measurements tend to show that the real situation could significantly deviate from these approximations due to geologic conditions. The influence of various geometric and stratigraphic factors on the groundwater regime and on the stability of slopes was studied with the finite-element method. To illustrate the parametric study, experimental evaluations of the flow patterns are presented at four sites. The stratigraphy and permeability measurements combined with the finite-element method enabled a complete flow net to be drawn and although some hypotheses had to be formulated with regards to the underlying aquifer recharge or permeability anisotropy, reasonable agreement was found between simulated and measured piezometric heads.


1984 ◽  
Vol 21 (3) ◽  
pp. 397-406 ◽  
Author(s):  
J. A. Charles ◽  
M. M. Soares

The failure envelopes of many soils are significantly nonlinear and the effect of this curvature on slope stability is examined. Charts, based on circular arc stability analyses, have been prepared and make possible the rapid assessment of the stability of slopes of simple geometry in uniform soils with curved failure envelopes. The effect on the factor of safety against stability failure of (i) the degree of curvature of the failure envelope of the soil, (ii) the magnitude of the pore pressure ratio within the slope, and (iii) the depth to a hard stratum has been investigated. Key words: depth factor, pore pressure, safety factor, shear strength, slope, stability.


2019 ◽  
Vol 92 ◽  
pp. 18009
Author(s):  
Yukun Wei ◽  
Anders B. Lundberg ◽  
Fredrik Resare

Field monitoring is frequently carried out during excavations and other geotechnical activities and provides additional information during the execution of a construction project. The interpretation of field monitoring data is often obscured by measurement noise and disturbance, and a systematic approach to assess both the quality and implications of the field monitoring data is very helpful in geotechnical practice. The possibility to infer practical conclusions from the field monitoring data depends on the type of field measurements, especially in monitoring of the stability of slopes. Pore pressure measurements can serve as a direct measurement of utilized soil strength for a slope, while deformation measurements are significantly more ambiguous and complicates the interpretation. The assessment of slope stability through field monitoring of deformations requires inverse or back analysis of the soil properties, followed by a forward analysis of the resulting slope stability. Such an inverse or back analysis is frequently influenced by non-uniqueness of the material properties and the stability of the measurement data. Systematic approaches to inverse or back analysis have been demonstrated in the scientific literature, but the practical use of these methods is not entirely straight-forward. The current paper presents a case study of systematic slope stability assessment through field measurements of deformations with a review of the field monitoring programme, numerical simulations of deformations, and a simplified approach to back analysis of the soil parameters. The excavation of a slope in an urban environment including layers of organic clay covered with highly heterogeneous gravel fill is used as an example of geotechnical back analysis. The aim is to elucidate some of the challenges in geotechnical back analysis while providing some practical solutions for practice.


Sign in / Sign up

Export Citation Format

Share Document