scholarly journals Performance of reduced herbicide doses in spring cereals

1993 ◽  
Vol 2 (6) ◽  
pp. 537-550
Author(s):  
Jukka Salonen

The consequences of dose reduction of three new herbicide formulations were studied for the control of annual broad-leaved weeds in fields of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The herbicide formulations were MCPA/mecoprop-P, MCPA/dichlorprop-P and MCPA/fluroxypyr. The efficacy of the lowest recommended dose and a 30% lower rate were tested and compared with the reference herbicide tribenuron-methyl. Trials were conducted at seven sites for three years. Considerable annual fluctuations in weed infestation were recorded. Although the dose reduction occasionally caused considerable decline in control (on %-scale), suppression of weed biomass was still satisfactory in most of the trials. On average, a 75% reduction of weed biomass in spring barley and an 83% reduction in spring wheat were achieved with reduced herbicide doses. Use of reduced herbicide doses for three years in the same fields caused neither a significant increase in weed infestation nor changes in the species composition of weed populations compared with treatments at recommended rates of application. There was a significant difference in biomass production between weed species. Consequently, the total biomass production of annual dicotyledonous weeds correlated only weakly (r=0.48) with the total weed density. Even in untreated plots the weed biomass at harvest constituted, on average, only 3.1-3.6% of the total vegetative biomass of crop stands. Thus, the crop yield responses to chemical weed control remained low.

2012 ◽  
Vol 63 (1) ◽  
pp. 213-220
Author(s):  
Maria Wanic ◽  
Magdalena Jastrzębska ◽  
Marta K. Kostrzewska

The paper presents the analysis of changes in weed infestation in spring barley cultivated in the years 1990-2004 in crop rotation with a 25% proportion of this cereal (potato - spring barley - sowing peas - winter triticale), when it was grown after potato, and in crop rotation with its 75% proportion (potato - spring barley - spring barley - spring barley), when it was grown once or twice after spring barley. In the experiment, no weed control was applied. Every year in the spring (at full emergence of the cereal) and before the harvest, the composition of weed species and weed density of particular weed species were determined, and before the harvest also their biomass. Weed density increased linearly on all plots during the 15-year period. The average values confirm the increase in weed biomass in the case when spring barley was grown once or twice after this crop; however, those differences were influenced by the previous situation only during some seasons. Weed density and biomass showed high year-to-year variability and a positive correlation with the amount of precipitation and a negative correlation with temperature during the period of the study. A negative correlation between the yield of barley and weed biomass was shown.


2011 ◽  
Vol 49 (No. 9) ◽  
pp. 414-421 ◽  
Author(s):  
M. Knežević ◽  
M. Đurkić ◽  
KneževićI ◽  
O. Antonić ◽  
S. Jelaska

The effects of different tillage systems and dose reduction on the efficacy of triasulfuron & chlortoluron mixture in the post-emergence control of annual broad-leaved weeds in winter wheat and spring barley were studied on lessive pseudogley soil in north-eastern Croatiaduring 1997–2000. Total dry biomass production in untreated plots was significantly influenced by tillage and it was lowest in continuous mouldboard ploughing (99 kg/ha), medium and similar in mouldboard ploughing/disk harrowing alternating every second year and in chisel ploughing (218 kg/ha) whereas the biomass was highest in continuous disk harrowing (422 kg/ha). Thereby the proportion of annual broad-leaved weed biomass was 70, 63, and 28%, respectively. Chenopodium album L., Ambrosia artemisiifolia L., Ch. polyspermum L. and Polygonum aviculare L. are the most abundant annual weed species in all tillage treatments. One half and one quarter of the recommended rate decreased the control efficacy of total weed biomass by 12 and 19%, respectively in wheat and by 6 and 15%, respectively in barley compared to the highest dose but they still provided a very good biomass control of main annual weeds (94–96 percentage units). The efficacy of reduced herbicide doses in the control of annual broad-leaved weeds did not vary significantly between tillage treatments and growing seasons. Significant interaction with continuous disk harrowing tillage and one-quarter herbicide dose was detected in the last year of wheat trial when perennial weeds increased their biomass proportion 8 times compared to four years before.


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 501-509 ◽  
Author(s):  
Jannie Maj Olsen ◽  
Hans-Werner Griepentrog ◽  
Jon Nielsen ◽  
Jacob Weiner

Previous research has shown that both the density and spatial pattern of wheat have an influence on crop growth and weed suppression, but it is not clear what degree of uniformity is necessary to achieve major improvements in weed suppression. Field experiments were performed over 3 yr to investigate the effects of crop density and different spatial distributions on weed suppression. The spatial pattern of spring wheat sown in five patterns and three densities in small weed-infested plots were analyzed with the use of digitized photographs of field plots to describe the locations of individual wheat plants asxandycoordinates. We used a simple quantitative measure, Morisita's index, to measure the degree of spatial uniformity. Increased crop density resulted in reduced weed biomass and increased crop biomass every year, but crop pattern had significant effects on weed and crop biomass in the first year only. Weather conditions during the second and third years were very dry, resulting in very low weed biomass production. We hypothesize that water deficiency increased the importance of belowground relative to aboveground competition by reducing biomass production, making competition more size symmetric, and reducing the effect of crop spatial pattern on weed growth. The results indicate that increased crop density in cereals can play an important role in increasing the crop's competitive advantage over weeds, and that spatial uniformity maximizes the effect of density when low resource levels or abiotic stress do not limit total biomass production.


2013 ◽  
Vol 66 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Aleksandra Głowacka

The experiment was conducted in the years 2008–2010 at the Experimental Station of the Faculty of Agricultural Sciences in Zamość, University of Life Sciences in Lublin. The following factors were analysed in the experiment: I. Cultivation method – sole cropping and strip cropping, which consisted in the cultivation of three plants: dent maize, common bean, and spring barley, in adjacent strips with a width of 3.3 m; II. Weed control methods – mechanical and chemical. The subject of the research was weed infestation of the 'Celio' variety of dent maize, the 'Aura' variety of common bean, and the 'Start' variety of spring barley. Weed infestation of the crops was assessed two weeks before harvesting by determining the species composi- tion as well as the number and dry weight of weeds. The dominant weed species in maize, common bean and spring barley were <em>Echinochloa crus-galli, Chenopodium album </em>and <em>Galinsoga parviflora</em>, constituting from 58% to 70% of the total number of weeds. Strip cropping clearly reduced the number of weeds per unit area in all the cultivated species and dry weight of aboveground parts produced by them in common bean and maize crops. The limiting effect of strip cropping on the weed infestation parameters was particularly clear in combination with the mechanical weed control method.


2012 ◽  
Vol 65 (3) ◽  
pp. 99-108
Author(s):  
Marta K. Kostrzewska ◽  
Maria Wanic ◽  
Magdalena Jastrzębska

A field study was carried out in the period 2000-2006 at the Experimental Station in Tomaszkowo belonging to the University of Warmia and Mazury in Olsztyn. Its aim was to compare weed infestation of a mixture of spring barley and field pea grown in a four crop rotation with different crop selection and sequence. Each year during tillering of spring barley and before the harvest of the mixture, weed species composition and density were evaluated, while additionally weed biomass was also estimated before the harvest. These results were used to determine species constancy, Simpson&rsquo;s dominance index, the Shannon-Wiener diversity and evenness indices as well as the community similarity index based on floristic richness, numbers and biomass of particular weed species. The cropping frequency and the position of the mixture in the crop rotation did not differentiate the species composition and total biomass of weed communities in the cereal-legume mixture crops. The crop rotation in which the mixture constituted 50% and was grown after itself had a reducing effect on weed numbers. Growing field pea in the 4-year crop rotation promoted weed infestation of the mixture and the dominance of weed communities. <em>Capsella bursa-pastoris</em>, <em>Chenopodium album</em>, <em>Echinochloa crus-galli</em>, <em>Elymus repens</em>, <em>Polygonum convolvulus</em>, and <em>Sonchus arvensis </em>were constant components of the agrophytocenoses. The weed communities were more similar in terms of their floristic composition than in terms of weed density and air-dry weight of weeds.


2016 ◽  
Vol 69 (3) ◽  
Author(s):  
Eleonora Wrzesińska ◽  
Anna Komorowska ◽  
Grażyna Nurkiewicz

The condition and degree of weed infestation were determined in a spring barely crop grown in a short-term monoculture after mulching the soil with plants grown as a stubble crop (the control treatment without cover crop – lacy phacelia, white mustard, sunflower). The field experiment was carried out in 2010–2013 on good rye soil complex using a split-block design in four replications. The obtained results (the mean from all years of the experiment) showed that the stubble crop, especially sunflower, reduced the diversity of weed species without causing at the same time changes in weed species dominance. In all the control treatments of the experiment, <em>Chenopodium album</em> and <em>Fallopia convolvulus</em> were the dominant species. The degree of spring barley weed infestation depended on the species grown in the cover crop. White mustard and lacy phacelia slightly increased the number of weeds but their fresh matter significantly increased. However, the sunflower cover crop significantly increased the number of weeds without any substantial differentiation of their fresh mass.


2012 ◽  
Vol 61 (2) ◽  
pp. 195-203
Author(s):  
Kinga Treder ◽  
Maria Wanic ◽  
Janusz Nowicki

Competitive interactions between spring wheat and spring barley were traced based on a pot experiment. In the years 2003-2004, three cycles of the experiment were carried out in a greenhouse. Two spring cereals - wheat and barley, sown in a mixture and in a monoculture, with different mineral fertilisation levels, were the object of evaluation and comparison. The experiment was set up according to the additive scheme, determining dry weight values for both species in 5 growth stages (emergence, tillering, shooting, heading and ripening). Results were used to determine relative yields and competition ratios. It was demonstrated that competition between the cereals started already from the emergence stage and lasted till the end of vegetation, manifesting itself with the greatest strength at the heading stage, but thereafter it weakened in the NPK poorer environment. Access to a larger pool of macroelements resulted in the intensification of competitive interactions. Spring barley used the limited growth factors better than wheat from shooting till the ripening period, and a reverse relation was exhibited only at the tillering stage.


2019 ◽  
Vol 10 (1) ◽  
pp. 107-121 ◽  
Author(s):  
J. Salonen ◽  
E. Ketoja

Abstract Adoption of reduced tillage in organic cropping has been slow, partly due to concerns about increasing weed infestation. Undersown cover crops (CCs) are considered to be a feasible option for weed management but their potential for weed suppression is insufficiently investigated in low-till organic cropping. The possibilities to reduce primary tillage by introducing CCs to maintain weed infestation at a level that does not substantially jeopardize crop yield were studied in a field experiment in southern Finland during 2015–2017. Eight different CC mixtures were undersown in cereals and the response in weed occurrence was consecutively assessed in spring barley, winter wheat, and finally, as a subsequent effect, in spring wheat. Growth of CCs was too slow to prevent the flush of early emerging weeds in spring barley whereas in winter wheat, CCs succeeded in hindering the growth of weeds. However, CCs could not prevent the increase of perennial weeds in a reduced tillage system in which the early growth of spring wheat was retarded in cool 2017. Consequently, after 2 years of reduced tillage, weed biomass was about 2.6 times higher and spring wheat yield was 30% lower than in plowed plots, respectively. No major differences in weed control efficacy among CC treatments were evident. A grain yield benefit was recorded after repeated use of leguminous CCs. The need for long-term field studies remains of particular interest regarding post-harvest performance and influence of CCs on perennial weeds before the inversion tillage.


2014 ◽  
Vol 41 (4) ◽  
pp. 424 ◽  
Author(s):  
Ahmad M. Alqudah ◽  
Thorsten Schnurbusch

In small-grain cereals, grain yield is closely associated with grain number. Improved spikelet survival is an important trait for increasing grain yield. We investigated spikelet number, spikelet survival and yield-related traits under greenhouse conditions, and pot- and soil-grown field conditions. Thirty-two spring barley (Hordeum vulgare L.) accessions (14 two- and 18 six-rowed accessions) were manually dissected to determine spikelet/floret number on the main culm spike (SNS) at awn primordium (AP), tipping (TIP), heading and anther extrusion. We observed a significant difference between two- and six-rowed barley for SNS and spikelet survival at all stages and growing conditions. Both traits were highly genetically controlled, with repeatability and broad-sense heritability values of 0.74–0.93. The rate of spikelet survival from AP to harvest was higher in two- (~70%) than in six-rowed (~58%) barley. Spikelet abortion, starting immediately after AP, was negatively affected by increased SNS and the thermal time required to reach the AP stage. The largest proportion of spikelet reduction happened during the AP–TIP phase, which was the most critical period for spikelet survival. The duration between AP and the end of stem elongation correlated better with spikelet survival and yield-related characters than the estimated duration of stem elongation using leaf height measurements. Our observations indicate that the main spike plays an important role in single-plant grain yield. Extending the length of the critical AP–TIP phase is promising for improving yield through increased spikelet development and survival. The results also demonstrate that greenhouse conditions are appropriate for studying traits such as phase duration and spikelet survival in barley.


Sign in / Sign up

Export Citation Format

Share Document