scholarly journals Effects of tillage and reduced herbicide doses on weed biomass production in winter and spring cereals

2011 ◽  
Vol 49 (No. 9) ◽  
pp. 414-421 ◽  
Author(s):  
M. Knežević ◽  
M. Đurkić ◽  
KneževićI ◽  
O. Antonić ◽  
S. Jelaska

The effects of different tillage systems and dose reduction on the efficacy of triasulfuron & chlortoluron mixture in the post-emergence control of annual broad-leaved weeds in winter wheat and spring barley were studied on lessive pseudogley soil in north-eastern Croatiaduring 1997–2000. Total dry biomass production in untreated plots was significantly influenced by tillage and it was lowest in continuous mouldboard ploughing (99 kg/ha), medium and similar in mouldboard ploughing/disk harrowing alternating every second year and in chisel ploughing (218 kg/ha) whereas the biomass was highest in continuous disk harrowing (422 kg/ha). Thereby the proportion of annual broad-leaved weed biomass was 70, 63, and 28%, respectively. Chenopodium album L., Ambrosia artemisiifolia L., Ch. polyspermum L. and Polygonum aviculare L. are the most abundant annual weed species in all tillage treatments. One half and one quarter of the recommended rate decreased the control efficacy of total weed biomass by 12 and 19%, respectively in wheat and by 6 and 15%, respectively in barley compared to the highest dose but they still provided a very good biomass control of main annual weeds (94–96 percentage units). The efficacy of reduced herbicide doses in the control of annual broad-leaved weeds did not vary significantly between tillage treatments and growing seasons. Significant interaction with continuous disk harrowing tillage and one-quarter herbicide dose was detected in the last year of wheat trial when perennial weeds increased their biomass proportion 8 times compared to four years before.

1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 851
Author(s):  
Eduardo S Leguizamon ◽  
German Ferrari ◽  
Martin M Williams ◽  
Nilda R Burgos ◽  
Ilias Travlos ◽  
...  

The increased availability and high adoption rate of glyphosate-tolerant crops have selected for several glyphosate-resistant weed species. The response of representative weed species to glyphosate was assessed to provide insights and tools for optimizing glyphosate use for economic, agronomic and environmental reasons. Anoda cristata, Chenopodium album, Digitaria sanguinalis, Eleusine indica and Portulaca oleracea were grown outdoors in pots containing commercial potting medium. An increasing dose of glyphosate was applied to these species at three growth stages. Weed response was evaluated visually compared to the nontreated control and shoot dry weights were recorded. Fecundity was also determined. Based on visual evaluations, the dose of glyphosate required to attain 90% control of the species tested exhibited an application rate margin up to 28.5-fold compared to recommended rate, denoting a potential for rate optimization. Except for A. cristata, the recommended dose of glyphosate could be reduced by 30%–60% and still achieve 90% or greater control. The order of species sensitivity, based on effective dose 50 (ED50 )values, was E. indica > C. album > D. sanguinalis > P. oleracea > A. cristata. The ratio of ED90/ED50 was constant, indicating that increasing the glyphosate dose 8.7-fold would reduce weed biomass 1.8-fold. In most cases, the fecundity-avoidance biomass threshold (i.e., the maximum allowable weed biomass for herbicide application in order to prevent weed seed production and dispersal) for glyphosate was below the ED90 value. Complimentary measures such as fecundity-avoidance biomass threshold will improve herbicide evaluation procedures and preserve the effectiveness of herbicides, including glyphosate, on sensitive species, an important issue particularly when action to reduce herbicide resistance development is highly required.


Poljoprivreda ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 3-14
Author(s):  
Zvonko Pacanoski ◽  
◽  
Arben Mehmeti ◽  

The field trials were carried out in the Bitola and Titov Veles regions during two sunflower growing seasons (2018 and 2019) to estimate a weed control in sunflower with the soil‒applied herbicides, influenced by a prolonged and limited rainfall. Polygonum aviculare L., Solanum nigrum L., Chenopodium album L., Amaranthus retroflexus L., Portulaca oleracea L., and Echinochloa crus-galli (L.) P. Beauv. were the most dominant weeds in both regions. The efficacy of PRE-em herbicides varied among the weed species, treatments, periods of efficacy estimation, regions, and years. The overall performances of the PRE-em herbicides were correlated with weather and soil conditions. The inconsistent weather patterns between the two years of the study likely influenced the weed control. All weeds in 2018 in the Bitola region were poorly controlled (<77% and <62%, 28 and 56 days after application, respectively) due to a higher amount of rainfall (57 mm) during the 10 days of the 1st decade after herbicide application. The herbicide efficacy has only produced a marginal control of weeds in 2019 in the Titov Veles region as well (<68% and <59%, 28 and 56 days after application, respectively), due to the drought conditions observed in this region in early spring and in mid-spring. A PREem application followed by a heavy rainfall resulted in a sunflower injury in the Bitola region in 2018, ranging from 9 to 28% across the PRE-em treatments seven days after emergence. The injuries by oxyfluorfen and dimethenamid-P were more serious (24 and 28%, respectively). The sunflower achene yields for each treatment in both regions generally reflected an overall weed control and crop injury.


1993 ◽  
Vol 2 (6) ◽  
pp. 537-550
Author(s):  
Jukka Salonen

The consequences of dose reduction of three new herbicide formulations were studied for the control of annual broad-leaved weeds in fields of spring barley (Hordeum vulgare L.) and spring wheat (Triticum aestivum L.). The herbicide formulations were MCPA/mecoprop-P, MCPA/dichlorprop-P and MCPA/fluroxypyr. The efficacy of the lowest recommended dose and a 30% lower rate were tested and compared with the reference herbicide tribenuron-methyl. Trials were conducted at seven sites for three years. Considerable annual fluctuations in weed infestation were recorded. Although the dose reduction occasionally caused considerable decline in control (on %-scale), suppression of weed biomass was still satisfactory in most of the trials. On average, a 75% reduction of weed biomass in spring barley and an 83% reduction in spring wheat were achieved with reduced herbicide doses. Use of reduced herbicide doses for three years in the same fields caused neither a significant increase in weed infestation nor changes in the species composition of weed populations compared with treatments at recommended rates of application. There was a significant difference in biomass production between weed species. Consequently, the total biomass production of annual dicotyledonous weeds correlated only weakly (r=0.48) with the total weed density. Even in untreated plots the weed biomass at harvest constituted, on average, only 3.1-3.6% of the total vegetative biomass of crop stands. Thus, the crop yield responses to chemical weed control remained low.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 485-496
Author(s):  
Andrea Smith ◽  
Nader Soltani ◽  
Allan C. Kaastra ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractHerbicide-resistant weeds are a growing concern globally; in response, new herbicide resistance traits are being inserted into crops. Isoxaflutole-resistant soybean [Glycine max (L.) Merr.] will provide a new mode of action for use in this crop. Ten experiments were conducted over a 2-yr period (2017, 2018) to determine herbicide interactions between isoxaflutole and metribuzin on soybean injury, weed control efficacy, and soybean yield on a range of soil types. Soybean leaf-bleaching injury caused by isoxaflutole was most severe at sites with higher levels of rainfall after application. Control of weed species with isoxaflutole (52.5, 79, and 105 g ai ha−1) and metribuzin (210, 315, and 420 g ai ha−1) differed by site based on amount of rainfall after application. At sites where there was sufficient rainfall for herbicide activation, isoxaflutole at all rates controlled common lambsquarters (Chenopodium album L.), Amaranthus spp., common ragweed (Ambrosia artemisiifolia L.), and velvetleaf (Abutilon theophrasti Medik.) &gt;90%; metribuzin at all rates controlled Amaranthus spp. and witchgrass (Panicum capillare L.) &gt;80%. Control of every weed species evaluated was reduced when there was limited rainfall after herbicide application. The co-application of isoxaflutole + metribuzin resulted in additive or synergistic interactions for the control of C. album, Amaranthus spp., A. artemisiifolia, A. theophrasti, Setaria spp., barnyardgrass [Echinochloa crus-galli (L.) P. Beauv], and P. capillare. Isoxaflutole and metribuzin can be an effective management strategy for common annual broadleaf and grass weeds in Ontario if timely rainfall events occur after herbicide application.


2015 ◽  
Vol 95 (6) ◽  
pp. 1199-1204 ◽  
Author(s):  
Kimberly D. Belfry ◽  
Kristen E. McNaughton ◽  
Peter H. Sikkema

Belfry, K. D., McNaughton, K. E. and Sikkema, P. H. 2015. Weed control in soybean using pyroxasulfone and sulfentrazone. Can. J. Plant Sci. 95: 1199–1204. Pyroxasulfone and sulfentrazone are new herbicides currently being evaluated for weed control in soybean [Glycine max (L.) Merr.] in Ontario, Canada. Seven experiments were conducted over a 3-yr period (2011 to 2013) at Ridgetown and Exeter, Ontario, to evaluate weed management using pyroxasulfone, sulfentrazone and their tank-mixes relative to the industry standard, imazethapyr plus metribuzin. Tank-mixing pyroxasulfone and sulfentrazone provided up to 97, 46, 60, 100 and 71% control of common lambsquarters (Chenopodium album L.), common ragweed (Ambrosia artemisiifolia L.), green foxtail [Setaria viridis (L.) Beauv.], Powell amaranth [Amaranthus powellii (S.) Wats.] and velvetleaf (Abutilon theophrasti Medic.), respectively, at 2 wk after treatment. Control with pyroxasulfone and sulfentrazone was improved when tank-mixed, relative to application of each herbicide separately. Although control was variable across weed species, no difference in control was identified between pyroxasulfone plus sulfentrazone and imazethapyr plus metribuzin. Soybean yield was up to 2.7, 2.4 and 2.9 t ha−1 for pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone application, yet imazethapyr plus metribuzin provided the highest yield (3.3 t ha−1). This research demonstrates that pyroxasulfone plus sulfentrazone may be used as a valuable weed control option in soybean; however, weed community composition may limit herbicidal utility.


2008 ◽  
Vol 3 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Djordje Malenčić ◽  
Jegor Miladinović ◽  
Milan Popović

AbstractChanges in antioxidant systems in soybean and associated weeds (Ambrosia artemisiifolia L., Chenopodium album L., Convolvulus arvensis L and Sinapis arvensis L.) were studied in relation to treatment with herbicides linuron and dimethenamid in the field experiment. Differences in the total superoxide dismutase (SOD) and catalase (Cat) activities were observed in plants after application of herbicide formulation. Quantities of superoxide (O2.-) and hydroxyl (·OH) radicals and malonyldialdehyde (MDA), reduced glutathione (GSH) and total polyphenols content were also determined. In addition to this, potential antioxidant activity of the plant ethanolic extracts were assessed based on the scavenging activity of stable DPPH free radicals. Results obtained suggest that plants investigated 1) expressed different antioxidant systems in response to herbicide treatment; 2) enzymatic and non-enzymatic protective mechanisms were complementary; 3) some weed species showed distinctive and combined activity of several biochemical parameters, such as Ambrosia artemisiifolia.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1492-1494 ◽  
Author(s):  
Darren E. Robinson ◽  
Kristen McNaughton ◽  
Nader Soltani

Pepper growers currently have limited access to many effective broadleaf herbicides. Field trials were conducted over a 3-year period in Ontario to study the effect of tank mixtures of sulfentrazone (100 or 200 g·ha−1 a.i.) with either s-metolachlor (1200 or 2400 g·ha−1 a.i.) or dimethenamid-p (750 or 1500 g·ha−1 a.i.) on transplanted bell pepper. Under weed-free conditions, there was no visual injury or reduction in plant height, fruit number, fruit size, or marketable yield of transplanted pepper with pretransplant applications of sulfentrazone applied in tank mixtures with s-metolachlor or dimethenamid-p. The tank mixture of sulfentrazone + s-metolachlor gave greater than 85% control of redroot pigweed (Amaranthus retroflexus) and eastern black nightshade (Solanum ptycanthum), but only 70% to 76% control of velvetleaf (Abutilon theophrasti), common ragweed (Ambrosia artemisiifolia), and common lambsquarters (Chenopodium album). The combination of sulfentrazone + dimethenamid-p provided good to excellent control of all weed species except velvetleaf. Based on this study, sulfentrazone and dimethenamid-p have potential for minor use registration in pepper.


Weed Science ◽  
1970 ◽  
Vol 18 (2) ◽  
pp. 206-214 ◽  
Author(s):  
R. P. Upchurch ◽  
F. L. Selman ◽  
H. L. Webster

Relatively pure stands of eight weed species were maintained under field conditions on a Goldsboro loamy sand at Lewiston, North Carolina, for all or part of a 6-year period. Herbicides evaluated as preemergence surface treatments for these species were 2-sec-butyl-4,6-dinitrophenol (dinoseb), isopropyl m-chlorocarbanilate (chloropropham), 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (diuron), 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine), and 3-amino-2,5-dichlorobenzoic acid (amiben). S-ethyl dipropylthiocarbamate (EPTC) and a,a,a-trifluro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) were evaluated as preemergence incorporated treatments. The first four herbicides were evaluated in 1961, 1964, and 1966 while the last three were evaluated in 1962, 1963, and 1965. A series of rates was used for each chemical with three replications. With the exception of diuron which failed to control goosegrass (Eleusine indica (L.) Gaertn.), all of the herbicides provided at least a moderate degree of control of goosegrass, smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl.), and redroot pigweed (Amaranthus retroflexus L.) at the respective typical field use rates. In general, trifluralin and amiben gave the best grass control and dinoseb the poorest. None of the herbicides effectively controlled common cocklebur (Xanthium pensylvanicum Wallr.) or ivyleaf morningglory (Ipomoea hederacea (L.) Jacq.). Trifluralin and EPTC did not control Pennsylvania smartweed (Polygonum pensylvanicum L.), common ragweed (Ambrosia artemisiifolia L.), and common lambsquarters (Chenopodium album L.). Chloropropham was ineffective on common ragweed. Simazine, chloropropham, and amiben controlled Pennsylvania smartweed while diuron, simazine, dinoseb, and amiben were especially effective on common lambsquarters. Distinctive patterns of nematode infestations were observed as a function of weed species.


2020 ◽  
Vol 13 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Eric Oseland ◽  
Mandy Bish ◽  
Christine Spinka ◽  
Kevin Bradley

AbstractIn 2016 and 2017, 98 separate commercially available bird feed mixes were examined for the presence of weed seed. All weed seed contaminants were counted and identified by species. Amaranthus species were present in 94 of the 98 bags of bird feed. Amaranthus species present in bird feed mixes included waterhemp [Amaranthus tuberculatus (Moq.) Sauer], redroot pigweed (Amaranthus retroflexus L.), Palmer amaranth (Amaranthus palmeri S. Watson), smooth pigweed (Amaranthus hybridus L.), and tumble pigweed (Amaranthus albus L.). Amaranthus palmeri was present in 27 of the 98 mixes. Seed of common ragweed (Ambrosia artemisiifolia L.), kochia [Bassia scoparia (L.) A.J. Scott], grain sorghum [Sorghum bicolor (L.) Moench], wild buckwheat (Fallopia convolvulus L., syn: Polygonum convolvulus), common lambsquarters (Chenopodium album L.), large crabgrass [Digitaria sanguinalis (L.) Scop.], and Setaria species were also present in bird feed mixes. A greenhouse assay to determine Amaranthus species seed germinability and resistance to glyphosate revealed that approximately 19% of Amaranthus seed in bird feed mixes are readily germinable, and five mixes contained A. tuberculatus and A. palmeri seed that were resistant to glyphosate. Results from linear regression and t-test analysis indicate that when proso millet (Panicum miliaceum L.), grain sorghum, and corn (Zea mays L.) were present in feed mixes, Amaranthus seed contamination was increased. The presence of proso millet and grain sorghum also increased contamination of grass weed species, while sunflower (Helianthus annuus L.) increased A. artemisiifolia contamination and safflower (Carthamus tinctorius L.) increased contamination of Bassia scoparia.


Sign in / Sign up

Export Citation Format

Share Document