scholarly journals Utilization of Rats Purun (Eleochalists of Dulcis) and Water Hyacinth (Eichhornia Crassipes) to Reduce Mercury Level (Hg) With Phytoremediation Method

2020 ◽  
Vol 2 (1) ◽  
pp. 1-11
Author(s):  
Sileni Putri ◽  
Nasoetion Nasoetion ◽  
Muhtadi Muhtadi

Metal mercury (Hg), has the chemical name hydragyrum which means liquid. Mercury metal is represented by Hg. In the periodic chemical elements Hg rank (NA) 80 and have atomic weights (BA 200,59). Rat Purun (Eleocharis dulcis) and water hyacinth (Eichhorniacrassipes) are plants that are widely found in tidal swamp land. Both plants can be used as organic fertilizer, biofilter, and absorb toxic elements such as heavy metals Lead (Pb), Iron (Fe), Mercury (Hg), Sulphate (SO4). This study aims to determine the ability of rat purun plants (Eleochalisdulcis) and water hyacinth (Eichhorniacrassipes) in reducing mercury (Hg) levels in water and to determine the effectiveness of rat purun plants (Eleochalisdulcis) and water hyacinth (Eichhorniacrassipes) in absorbing mercury Hg. Sample analysis was carried out at the Bandar Lampung Standardization Research Center.The results obtained by rat purun plants (Eleochalisdulcis) can reduce mercury levels (Hg). The effectiveness of reducing heavy metal mercury (Hg) is 97.88%. Water hyacinth plants (Eichhorniacrassipes) have effectiveness in reducing heavy metals mercury (Hg) which is equal to 96.66%.

2019 ◽  
Vol 2 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Jimmy Jimmy ◽  
Diah Indriani Widiputri ◽  
Paulus Gunawan

Eichhornia crassipes is well-known as water hyacinth. Water hyacinth grows rapidly in the nutrient-rich water and high light intensity places. The uncontrollable growth of water hyacinth has caused many negative impacts to the environment. For instance, interrupted water transport and decreased population of aquatic lives. The capacity of utilising water hyacinth is slower than water hyacinth growth and water hyacinth is still considered as a threat to theecosystem. This work was focused on the study of the pharmacological activity and heavy metal content of water hyacinth in Lake Cipondoh, Tangerang. Fresh water hyacinth was pre-treated through oven-drying and milling process. After that, each part of the plant was macerated by using multiple extraction method with 96% ethanol/water and three variations of sample-to-solvent ratios (1:30, 1:50, and 1:75 w/v). The result of the experiment showed thatwater hyacinth leaves produced an extract with lowest IC 50 (55.76 ± 6.73 ppm) compared toother parts. The most optimum solvent used to achieve this result was 96% ethanol/water (1:1 v/v). In order to obtain the lowest antioxidant activity, the sample to solvent ratio used was 1:50 and the heavy metal in the extract was very low. With this result, it was concluded that there is a promising opportunity to apply the water hyacinth growing in Lake Cipondoh, Tangerang as herbal medicine ingredient. Through this utilization, the overall number of water hyacinth in Indonesia can be reduced or at the least be controlled, so that the environmental problem caused by this plant can be minimized.


2017 ◽  
Vol 16 (2) ◽  
pp. 21 ◽  
Author(s):  
Adonis P. Adornado ◽  
Allan N. Soriano ◽  
Omar Nassif Orfiana ◽  
Mark Brandon J. Pangon ◽  
Aileen D. Nieva

Biosorption is becoming an attractive alternative for the removal of heavy metal from contaminated wastewaters since it offers low capital and operating costs. It has a great potential on heavy metal decontamination and the possibility of metal recovery. The study evaluated the performance of water hyacinth (Eichhornia crassipes) in a fixed bed column on sequestering heavy metals present in wastewaters. Column breakthrough curves at varying parameters were evaluated. The study used Aspen Adsorption® to simulate the biosorption process. Analysis of breakthrough curves for the single metal system shows that increasing both influent flow rate and initial metal concentration reduces the metal uptake of the column, while increasing bed height enhances the metal uptake of the column. Presence of both Cd(II) and Cu(II) in the system promotes competitive sorption processes. Analysis of the breakthrough curves for the binary metal system showed that copper ions adsorbed to the adsorbent are replaced by cadmium ions when the maximum capacity of the column is reached. This leads to the outlet concentration of Cu(II) exceeding its initial concentration. This phenomenon shows that Cd(II) has more affinity with E. crassipes than Cu(II).


2020 ◽  
Vol 143 ◽  
pp. 02020
Author(s):  
Tao Ma ◽  
Wenhui Zhang ◽  
Hongkai Fan ◽  
Lizhu Huang ◽  
Qing Xu ◽  
...  

The remediation performances of heavy metals contaminaged sediment by hydrophytes including Alternanthera Philoxeroides, Canna indica L., Nymphaea tetragona, Typha orientalis, Phragmites australis, Phragmites australis, Hydrilla verticillata, Cyperus alternifolius L., Eichhornia crassipes, Acorus tatarinowii, Digitaria sanguinalis (L.) Scop were investigated through batch pot experiments. The results showed that the enrichment effect of Pb was better in Alternanthera Philoxeroides and Acorus tatarinowii with the BCFs of 4.42 and 1.22, and the TFs of 7.84 and 4.23, respectively. The Cr enrichment effects by Nymphaea tetragona, Hydrilla verticillata and Eichhornia crassipes (Mart.) Solms were better, which BCFs were 2.69, 1.91 and 3.71, and which TFs were 7.93, 2.07 and 2.18, respectively.


Author(s):  
Olivier Pourret ◽  
Andrew Hursthouse

Even if the Periodic Table of Chemical Elements is relatively well defined, some controversial terms are still in use. Indeed, the term “heavy metal” is a common term used for decades in the natural sciences, and even more in environmental sciences, particularly in studies of pollution impacts. As the use of the term appears to have increased, we highlight the relevance of the use of the term “Potentially Toxic Element(s)”, which needs more explicit endorsement, and we illustrate the chemical elements that need to be considered.


2018 ◽  
Vol 10 (8) ◽  
pp. 2684 ◽  
Author(s):  
Giorgio Provolo ◽  
Giulia Manuli ◽  
Alberto Finzi ◽  
Giorgio Lucchini ◽  
Elisabetta Riva ◽  
...  

Cattle and pig manure contain useful mineral nutrients (N, P, and K) and are therefore used as organic fertilizer. However, excessive applications of manure can cause environmental problems and threaten animal and human health because these materials also hold significant amounts of heavy metals, particularly Cu and Zn. To assess the potential risk due to the increased concentrations of heavy metals (Cu, Mn, Zn, and Cr) in a harvested crop, two maize hybrids were grown in pots on four different soils with three different fertilisers (urea, pig manure, and cattle manure). Both soil and manure characteristics influenced the heavy metal concentrations in the plant shoots. Organic fertilisation strongly interacted with the soils and, in general, reduced the shoot content of Cu, Mn, and Zn. A preliminary assessment of the heavy metal balance of the agricultural systems based on the intensive livestock production and maize cultivation showed that the potential soil enrichment of the long-term application of livestock manure arises mainly from the application of pig slurries that have a high content of Cu and Zn. The time required to apply an amount of metal that is equal to the initial soil content is 60–300 years for Zn and 240–450 years for Cu, depending on the soil type and the initial heavy metal content.


2011 ◽  
Vol 39 (2) ◽  
pp. 135 ◽  
Author(s):  
Erzsebet BUTA ◽  
Laura PAULETTE ◽  
Tania MIHĂIESCU ◽  
Mihai BUTA ◽  
Maria CANTOR

Many plants are capable of accumulating heavy metals (called hyperacumulators), one of which is the water hyacinth Eichhornia crassipes Mart. The roots of this water plant naturally absorb pollutants, including heavy metals such as Pb, Hg, Zn, Co, Cd, and Cu and can be used for wastewater treatment. The aim of this study was to assess the influence of heavy metals on growth and development of water hyacinth and to determinate the uptake capacity of heavy metals of this species. It was evaluated for its effectiveness in reducing pollution potential in wastewater. From the combination of experimental factors 11 variants resulted. The results showed that Eichhornia absorbed a high quantity of Pb (504 mg/kg dry matter) and Cu (561 mg/kg dry matter) in their roots. More Cu accumulated in the root compared to Pb. The level of Zn absorption was lower in roots (84 mg/kg dry matter) and also in stem plus leaves (51 mg/kg dry matter). A high quantity of Cd (281 mg/kg dry matter) was removed from stem plus leaves of Eichhornia while the level of Co was very low (45 mg/kg dry matter). Regarding the growth and development of this plant it was found that in tanks with Pb plants had a better development and had flowers also, and in the case of Cd, Co, Cu at a double dose of maximum admissible limits, the plants died and the growing period was shorter.


Author(s):  
A.K. Tashenov ◽  
◽  
A.S. Kabylova ◽  
M.V. Frontasyeva ◽  
N.M. Omarova ◽  
...  

The results on assessing trace element contamination of the environment based on analysis of moss biomonitors collected in Central Kazakhstan. Concentrations of elements were determined by neutron activation analysis and atomic absorption spectrometry in the Joint Institute for Nuclear Research. A total of 39 elements were identified, including heavy metals.


2018 ◽  
Vol 68 (12) ◽  
pp. 2765-2767 ◽  
Author(s):  
Violeta Monica Radu ◽  
Petra Ionescu ◽  
Elena Diacu ◽  
Alexandru Anton Ivanov

The quality of the aquatic environment was strongly influenced by the development of urbanization, industrialization and population growth, and therefore water pollution, mainly due to the presence of heavy metal, becoming a widespread concern. The objective of this work was to evaluate the possibility to remove heavy metals Cd, Zn, Cr and Ni from wastewater using two aquatic plants, water hyacinth (Eichornia crassipes) and water lettuce (Pistia stratiottes). These plants possess excellent abilities to metabolize and bioaccumulate heavy metals from various polluted aquatic environments. For a period of 30 days, the content of heavy metals from wastewater and aquatic plants samples was monitored weakly and the efficacy of these plants to remove heavy metals was quantified. Heavy metals were determined by atomic absorption spectrophotometry with graphite furnace (GFAAS). The obtained results have shown the efficacy of Eichornia crassipes and Pistia stratiottes to remove metals from the studied wastewater. The bioaccumulation rate of heavy metals in plants was effective until day 24 of the period of 30 days of the experiment, as the plants become inefficient beyond this period. The uptake of heavy metals in the studied aquatic plants depends on the concentration of each heavy metal present in the used wastewater and the exposure time.


Sign in / Sign up

Export Citation Format

Share Document