scholarly journals Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption

2017 ◽  
Vol 16 (2) ◽  
pp. 21 ◽  
Author(s):  
Adonis P. Adornado ◽  
Allan N. Soriano ◽  
Omar Nassif Orfiana ◽  
Mark Brandon J. Pangon ◽  
Aileen D. Nieva

Biosorption is becoming an attractive alternative for the removal of heavy metal from contaminated wastewaters since it offers low capital and operating costs. It has a great potential on heavy metal decontamination and the possibility of metal recovery. The study evaluated the performance of water hyacinth (Eichhornia crassipes) in a fixed bed column on sequestering heavy metals present in wastewaters. Column breakthrough curves at varying parameters were evaluated. The study used Aspen Adsorption® to simulate the biosorption process. Analysis of breakthrough curves for the single metal system shows that increasing both influent flow rate and initial metal concentration reduces the metal uptake of the column, while increasing bed height enhances the metal uptake of the column. Presence of both Cd(II) and Cu(II) in the system promotes competitive sorption processes. Analysis of the breakthrough curves for the binary metal system showed that copper ions adsorbed to the adsorbent are replaced by cadmium ions when the maximum capacity of the column is reached. This leads to the outlet concentration of Cu(II) exceeding its initial concentration. This phenomenon shows that Cd(II) has more affinity with E. crassipes than Cu(II).

2019 ◽  
Vol 2 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Jimmy Jimmy ◽  
Diah Indriani Widiputri ◽  
Paulus Gunawan

Eichhornia crassipes is well-known as water hyacinth. Water hyacinth grows rapidly in the nutrient-rich water and high light intensity places. The uncontrollable growth of water hyacinth has caused many negative impacts to the environment. For instance, interrupted water transport and decreased population of aquatic lives. The capacity of utilising water hyacinth is slower than water hyacinth growth and water hyacinth is still considered as a threat to theecosystem. This work was focused on the study of the pharmacological activity and heavy metal content of water hyacinth in Lake Cipondoh, Tangerang. Fresh water hyacinth was pre-treated through oven-drying and milling process. After that, each part of the plant was macerated by using multiple extraction method with 96% ethanol/water and three variations of sample-to-solvent ratios (1:30, 1:50, and 1:75 w/v). The result of the experiment showed thatwater hyacinth leaves produced an extract with lowest IC 50 (55.76 ± 6.73 ppm) compared toother parts. The most optimum solvent used to achieve this result was 96% ethanol/water (1:1 v/v). In order to obtain the lowest antioxidant activity, the sample to solvent ratio used was 1:50 and the heavy metal in the extract was very low. With this result, it was concluded that there is a promising opportunity to apply the water hyacinth growing in Lake Cipondoh, Tangerang as herbal medicine ingredient. Through this utilization, the overall number of water hyacinth in Indonesia can be reduced or at the least be controlled, so that the environmental problem caused by this plant can be minimized.


2013 ◽  
Vol 67 (7) ◽  
pp. 1612-1619 ◽  
Author(s):  
Mohamed El Zayat ◽  
Edward Smith

Activated carbon produced from cotton stalks was examined for the removal of heavy metal contaminants. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Continuous flow experiments using the activated carbon in fixed beds were conducted to determine heavy metal breakthrough versus bed volumes treated. At given pH value in the range 5–7, the adsorption capacity was similar for copper and lead and clearly greater than for cadmium. A surface titration experiment indicated negative surface charge of the activated carbon at pH > 6, meaning that electrostatic attraction of the divalent heavy metals can occur below the pH required for precipitation. Substantive metal removal below the pH of zero charge might be due to surface complexation. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the activated carbon surface as well as equilibria between background ions used to establish ionic strength and the sorbent surface. Pb(II) adsorption edges were best modeled using inner-layer surface complexation of Pb2+, while Cd(II) and Cu(II) data were best fit by outer-layer complexes with Me2+. The full set of equilibrium constants were used as input in a dual-rate dynamic model to simulate the breakthrough curves of the target metals (Pb, Cu and Cd) from fixed bed experiments and to estimate external (or film) diffusion and internal (surface) diffusion coefficients.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-11
Author(s):  
Sileni Putri ◽  
Nasoetion Nasoetion ◽  
Muhtadi Muhtadi

Metal mercury (Hg), has the chemical name hydragyrum which means liquid. Mercury metal is represented by Hg. In the periodic chemical elements Hg rank (NA) 80 and have atomic weights (BA 200,59). Rat Purun (Eleocharis dulcis) and water hyacinth (Eichhorniacrassipes) are plants that are widely found in tidal swamp land. Both plants can be used as organic fertilizer, biofilter, and absorb toxic elements such as heavy metals Lead (Pb), Iron (Fe), Mercury (Hg), Sulphate (SO4). This study aims to determine the ability of rat purun plants (Eleochalisdulcis) and water hyacinth (Eichhorniacrassipes) in reducing mercury (Hg) levels in water and to determine the effectiveness of rat purun plants (Eleochalisdulcis) and water hyacinth (Eichhorniacrassipes) in absorbing mercury Hg. Sample analysis was carried out at the Bandar Lampung Standardization Research Center.The results obtained by rat purun plants (Eleochalisdulcis) can reduce mercury levels (Hg). The effectiveness of reducing heavy metal mercury (Hg) is 97.88%. Water hyacinth plants (Eichhorniacrassipes) have effectiveness in reducing heavy metals mercury (Hg) which is equal to 96.66%.


2010 ◽  
Vol 6 (1) ◽  
pp. 56-60
Author(s):  
Anis Shofiyani ◽  
Gusrizal Gusrizal

Effect of pH and determination of adsorption capacity of Cu(II), Ni(II) and Pb(II) heavy metal ions on adsorbent prepared from Eichhornia crassipes (eceng gondok) biomass has been investigated. The influence of media acidity on the adsorption characteristics was carried out by determining ions adsorbed at various pH in the range of 2-10, while an adsorption isotherm model of Langmuir was used to estimate the capacity of adsorption. Results showed that Cu(II) was optimally adsorbed at the range pH of 5-6, Ni(II) at 2-4, while Pb(II) reached an optimum adsorption at pH 2-3. The adsorption data of Cu(II), Ni(II) and Pb(II) for the adsorbent folowed quite well Langmuir isotherm model, confirmed that such chemisorptions involved on that process. The ions adsorption capacities (am) were 27.47, 16.69, and 15.04 mg/g for Pb(II), Cu(II), and Ni(II), respectively.   Keywords: adsorption, heavy metal, Eichhornia crassipes, pH, capacity


Author(s):  
MI Nazir ◽  
I Idrees ◽  
P Idrees ◽  
S Ahmad ◽  
Q Ali ◽  
...  

The present study was carried out to determine the potential for phytoremediation of water hyacinth (Eichhornia crassipes) plant for Cadmium (Cd), Arsenic (Ar), and Mercury (Hg) absorption. The samples were collected from Dhamthal, Zafarwal and Narowal. The plant samples were cut into their parts and dried at room temperature for 25-30 days until they were fully dried. The change in fresh weight and dry weight was examined. The data of collected samples was recorded and statistically analyzed, which revealed the significance of results for different localities. The lower coefficient of variation was recorded for all studied traits which revealed that there was consistency among the results for different localities. For our study the plant's percentage removal of metals was determined using atomic absorption spectroscopy in plant sample as well as water sample. Metal uptake happened at variable degrees. The water hyacinth uptake the largest metal uptake per dry weight of water hyacinth was 166.25ppm for cadmium and the smallest 0.032ppm was for mercury. In water sample highest amount of metal was 177.25ppm for cadmium and lowest 0.012ppm was for arsenic. It was found from our study that the water hyacinth (Eichhornia crasssipes) uptake cadmium (cd) metal from sewage water in highest amount as compare to arsenic and mercury. It was suggested that the use of water hyacinth plant may be helpful to remove heavy metals from waste water to minimize the heavy metal pollution of water.


Sign in / Sign up

Export Citation Format

Share Document