O uso de membrana de colágeno de pericárdio bovino na regeneração óssea: características e relato de caso

2021 ◽  
Vol 12 (46) ◽  
pp. 32-43
Author(s):  
Fábio Shiniti Mizutani ◽  
Danilo Lazzari Ciotti ◽  
Danilo Maeda Reino ◽  
Marcelo De Faveri

The aim of this article was to describe the use of the bovine pericardium collagen membrane and to present its physical-chemical characteristics through laboratory tests, in addition to a case report proving its clinical performance. Called native collagen membranes from the animal pericardium, this product has ideal characteristics for promoting bone neoformation in grafting procedures for volumetric augmentation. Scanning electron microscopy (SEM) tests showed the organization of collagen fibers, and tensile tests pointed an adequate resistance to the mechanisms of graft stabilization, through sutures, screws or pins. Within the limitations of this article, it was possible to conclude that the bovine pericardium collagen membrane has the appropriate characteristics for use in guided bone regeneration procedures, with efficient handling, stability, and predictability.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 786 ◽  
Author(s):  
Luca Sbricoli ◽  
Riccardo Guazzo ◽  
Marco Annunziata ◽  
Luca Gobbato ◽  
Eriberto Bressan ◽  
...  

Several treatment modalities have been proposed to regenerate bone, including guided bone regeneration (GBR) where barrier membranes play an important role by isolating soft tissue and allowing bone to grow. Not all membranes biologically behave the same way, as they differ from their origin and structure, with reflections on their mechanical properties and on their clinical performance. Collagen membranes have been widely used in medicine and dentistry, because of their high biocompatibility and capability of promoting wound healing. Recently, collagen membranes have been applied in guided bone regeneration with comparable outcomes to non-resorbable membranes. Aim of this work is to provide a review on the main features, application, outcomes, and clinical employment of the different types of collagen membranes. Comparisons with non-resorbable membranes are clarified, characteristics of cross-linked collagen versus native collagen, use of different grafting materials and need for membrane fixation are explored in order to gain awareness of the indications and limits and to be able to choose the right membrane required by the clinical condition.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4599
Author(s):  
Jong-Ju Ahn ◽  
Hyung-Joon Kim ◽  
Eun-Bin Bae ◽  
Won-Tak Cho ◽  
YunJeong Choi ◽  
...  

The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed. In the animal study, 36 artificial bone defects were formed in the mandibles of six beagles. Implants were inserted at the time of bone grafting, and membranes were assigned randomly. Eight weeks later, animals were sacrificed, micro-computed tomography was performed, and hematoxylin-eosin stained specimens were prepared. Physical properties (tensile strength and enzymatic degradation rate) were better in the Test group than in the Control group. No inflammation or membrane collapse was observed in either group, and bone volumes (%) in defects around implants were similar in the two groups (p > 0.05). The results of new bone areas (%) analysis also showed similar values in the two groups (p > 0.05). Therefore, it can be concluded that cross-linking the collagen membranes with EDC is the method of enhancing the physical properties (tensile strength and enzymatic degradation) of the collagen membranes without risk of toxicity.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4135
Author(s):  
Igor da Silva Brum ◽  
Carlos Nelson Elias ◽  
Ana Lucia Rosa Nascimento ◽  
Cherley Borba Vieira de Andrade ◽  
Ronaldo Sergio de Biasi ◽  
...  

In this work, in vitro testing was used to study the properties of non-crosslinked type 1 bovine derived collagen membranes used in bone regeneration surgery. Collagen membranes were prepared, their surface roughness was quantified by interferometry, their morphology was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), their wettability was measured by the contact angle technique, their mechanical properties were investigated by tensile testing, their phase transformation temperatures were measured by Differential Scanning Calorimetry (DSC), and their biocompatibility was evaluated by immunological testing. The calorimetry tests showed that the membrane is formed only by type 1 collagen. The SEM observations showed that the morphology consists of layers of highly organized collagen fibers and patterns of striated fibrils typical of type 1 collagen. The small contact angle showed that the membrane is hydrophilic, with the possibility of rapid absorption of body fluids. The tensile tests showed that the membrane has enough elasticity, ductility, and mechanical strength for use in tissue regeneration. With the immunostaining technique, it was possible to confirm the membrane biocompatibility.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5187
Author(s):  
Jung-Seok Lee ◽  
Goran Mitulović ◽  
Layla Panahipour ◽  
Reinhard Gruber

Collagen membranes and matrices being widely used in guided bone regeneration and soft tissue augmentation have characteristic properties based on their composition. The respective proteomic signatures have not been identified. Here, we performed a high-resolution shotgun proteomic analysis on two porcine collagen-based biomaterials designed for guided bone regeneration and soft tissue augmentation. Three lots each of a porcine-derived collagen membrane and a matrix derived from peritoneum and/or skin were digested and separated by nano-reverse-phase high-performance liquid chromatography. The peptides were subjected to mass spectrometric detection and analysis. A total of 37 proteins identified by two peptides were present in all collagen membranes and matrices, with 11 and 16 proteins being exclusively present in the membrane and matrix, respectively. The common extracellular matrix proteins include fibrillar collagens (COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL5A3, COL11A2), non-fibrillar collagens (COL4A2, COL6A1, COL6A2, COL6A3, COL7A1, COL16A1, COL22A1), and leucine-rich repeat proteoglycans (DCN, LUM, BGN, PRELP, OGN). The structural proteins vimentin, actin-based microfilaments (ACTB), annexins (ANXA1, ANXA5), tubulins (TUBA1B, TUBB), and histones (H2A, H2B, H4) were also identified. Examples of membrane-only proteins are COL12A1 and COL14A1, and, of matrix only proteins, elastin (ELN). The proteomic signature thus revealed the similarities between but also some individual proteins of collagen membrane and matrix.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3007
Author(s):  
Marta Vallecillo-Rivas ◽  
Manuel Toledano-Osorio ◽  
Cristina Vallecillo ◽  
Manuel Toledano ◽  
Raquel Osorio

Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
YuYuan Zhang ◽  
WeiJia Mao ◽  
Jian Wang ◽  
Quan-Li Li ◽  
May Lei Mei ◽  
...  

An antibacterial membrane with a bone-like structure was developed for guided bone regeneration (GBR) by mineralising acellular bovine pericardium (ABP) and loading it with the antibiotic minocycline. The bovine pericardium (BP) membrane was processed using physical and chemical methods to remove the cellular components and obtain ABP membranes. Then, the ABP membranes were biomimetically mineralised using a calcium phosphate-loaded agarose hydrogel system aided by electrophoresis. Minocycline was adsorbed to the mineralised ABP membrane, and the release profile in vitro was studied. The membranes were characterised through scanning electron microscopy, diffuse reflectance-Fourier transform infrared spectroscopy, and X-ray diffraction. Results showed that the ABP membrane had an asymmetric structure with a layer of densely arranged and irregularly aligned collagen fibrils. Collagen fibrils were calcified with the formation of intrafibrillar and interfibrillar hydroxyapatites similar to the bone structure. Minocycline was incorporated into the mineralised collagen membrane and could be released in vitro. This process endowed the membrane with an antibacterial property. This novel composite membrane offers promising applications in bioactive GBR.


Author(s):  
Camilo A S Ballesteros ◽  
Luiza Mercante ◽  
Augusto Alvarenga ◽  
Murilo Henrique Moreira Facure ◽  
Rodrigo Schneider ◽  
...  

A large variety of engineered nanostructures possessing enzyme-like activities have been proposed recently, which unique physical-chemical characteristics enable remarkable technological advances. In this review, we survey recent advances on nanozymes...


Sign in / Sign up

Export Citation Format

Share Document