scholarly journals Optimization of the method for isolation of epithelial cells from the non-glandular part of the rat stomach for flow cytometry

2020 ◽  
Vol 90 (5) ◽  
pp. 517-525
Author(s):  
Gordana Joksić ◽  
◽  
Jelena Filipović Tričković ◽  
Mileva Mićić ◽  
Ivana Joksić ◽  
...  

Traditional methods in cell proliferation studies are based on immunohistochemical detection of proliferating cells in the target tissue. Since they are time consuming, optimization of novel, more efficient methods is important for large scale proliferation studies. In this study, we aimed to optimize the isolation of single epithelial rat forestomach cells for flow cytometry. As a marker of cellular proliferation we used the Ki-67 antibody to detect this nuclear protein expressed in proliferating cells. We also performed immunohistochemical detection of Ki-67 positive cells and propidium iodide staining to validate the results. 3-tert- butyl -4-hydroxyanisole was used as the positive control to ensure cellular proliferation. The results showed that isolation of epithelial cells with collagenase, trypsin and cell strainer ensures great cell viability (>95%) and the purity of the samples. Flow cytometry and immunostaining with the Ki-67 antibody indicated that 3-tert- butyl-4-hydroxyanisole treatment leads to a significant increase in proliferation. A significant positive correlation was observed between the results obtained by immunohistochemistry and flow cytometry, but the flow cytometric data had a smaller measurement error, suggesting the equal sensitivity and greater accuracy of this method. Propidium iodide staining showed that the percentage of cells in the G2+S phase of the cell cycle correlated positively with the percentage of Ki-67 positive cells assessed by flow cytometry, indicating that Ki-67 positive cells reflect an active dividing cell pool. We conclude that the isolation of forestomach epithelial cells described is a simple and reliable method for obtaining viable cells for use in flow cytometry. Compared to immunohistochemistry, flow cytometric detection of the Ki-67 antigen is equally sensitive, but much faster and provides more accurate results.

2018 ◽  
Vol 64 (6) ◽  
pp. 525-529 ◽  
Author(s):  
Natália Marcondes ◽  
Flavo Fernandes ◽  
Gustavo Faulhaber

SUMMARY OBJECTIVE: Ki-67 is a nuclear protein associated with cellular proliferation in normal or leukemic conditions that can help identify more aggressive diseases and is usually evaluated with immunohistochemistry. The aim of this was to assess Ki-67 expression on mature B-cell neoplasms samples with flow cytometry immunophenotyping. METHOD: After surface staining with CD19 and CD45, intracellular staining for Ki-67 was performed in leukemic mature B-cells. Ki-67 expression was evaluated with flow cytometry. RESULTS: Ki-67 expression was higher in mantle cell lymphoma, Burkitt lymphoma, and diffuse large B-cell lymphoma cases. It was also associated with CD38 mean fluorescence intensity. CONCLUSIONS: Ki-67 expression evaluated by flow cytometry can be a useful tool in the diagnosis of mature B-cell neoplasms. More studies are needed to validate Ki-67 assessment with flow cytometry immunophenotyping.


2019 ◽  
Vol 15 (11) ◽  
Author(s):  
Thays Saynara Alves Menezes-Sá ◽  
Maria de Fátima Arrigoni-Blank ◽  
Andréa Santos da Costa ◽  
Janay De Almeida Santos-Serejo ◽  
Arie Fitzgerald Blank ◽  
...  

Chromosome doubling induction in orchids may benefit their production for resulting in flowers of higher commercial value, larger size and higher content of substances that intensify the color and fragrance when compared with diploid orchids. This work aimed to induce and confirm artificial polyploidization, using flow cytometry and stomatal analysis. Explants were treated with colchicine at concentrations of 0, 2.5, 7.5, and 12.5 mM, for 24 and 48 hours and with oryzalin, at concentrations of 0, 10, 30, and 50 μM, for three and six days. For the flow cytometric analysis, a sample of leaf tissue was removed from each plant, crushed to release the nuclei and stained with propidium iodide. In addition to flow cytometry, the ploidy of the antimitotic treated plants was evaluated by stomata analysis. Young leaves were used where the density, functionality and stomatal index were evaluated. Colchicine provided induction of satisfactory polyploidy in C. tigrina at all concentrations and times of exposure, obtaining a greater number of polyploid individuals in the concentration of 12.5 mM for 48 hours. Oryzalin did not induce chromosome duplication at the tested concentrations.


1993 ◽  
Vol 79 (3) ◽  
pp. 291-291
Author(s):  
F Lopez ◽  
S Mikhalap ◽  
F Belloc ◽  
F Lacombe ◽  
P Dumain ◽  
...  

2001 ◽  
Vol 8 (6) ◽  
pp. 1240-1247 ◽  
Author(s):  
Kieren A. Marr ◽  
Michael Koudadoust ◽  
Michele Black ◽  
S. Arunmozhi Balajee

ABSTRACT Detailed investigations of macrophage phagocytosis and killing ofAspergillus fumigatus conidia have been limited by technical difficulties in quantifying fungal uptake and viability. In order to study early events in cell pathogen ingestion and killing, we developed a new flow cytometry assay that utilizes the fungus-specific viability dye FUN-1. Metabolically active A. fumigatusconidia accumulate orange fluorescence in vacuoles, while dormant or dead conidia stain green. After incubation within THP-1 cells, recovered conidia are costained with propidium iodide (PI) to discriminate between dormant and dead cells. Flow cytometric measurements of FUN-1 metabolism and PI uptake provide indicators of conidial viability, dormancy, and death. Conidial phagocytosis and killing are also assessed by measurement of green and orange FUN-1 fluorescence within the THP-1 cell population. Compared to previously described methods, this assay has less error introduced by membrane permeability changes and serial dilution of filamentous fungal forms. Results suggest that the THP-1 cells kill conidia rapidly (within 6 h) after exposure. Conidia that are preexposed to human serum are ingested and killed more quickly than are nonopsonized conidia.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1558-1558 ◽  
Author(s):  
Maria Bhatti ◽  
Thomas Ippolito ◽  
Cory Mavis ◽  
Matthew J. Barth

Abstract Introduction: Burkitt lymphoma (BL) is the most common form of B-cell non-Hodgkin lymphoma (B-NHL) in children. Despite significant improvements in survival with de novo disease, treatment of relapsed or refractory BL remains a significant hurdle with survival in only about 20% of patients. Novel therapeutic approaches are necessary to improve outcomes in this group of childhood B-NHL patients with the worst prognosis. Recent literature has identified a high rate of recurrent mutations that result in activation of the PI3K/Akt pathway in BL and have implicated activation of PI3K/Akt in coordination with Myc in BL lymphomagenesis. Our laboratory has developed rituximab and chemotherapy resistant cell line models and subsequently found that these cell lines exhibit increased activation of Akt. We hypothesized that increased activation of Akt may be contributing to chemoresistance and that targeting the PI3K/Akt/mTOR pathway may increase chemoresponsiveness. To that end, we have investigated the effect of inhibiting the PI3K/Akt/mTOR pathway with either the PI3K-delta inhibitor idelalisib or the pan-PI3K/mTOR inhibitor BEZ-235 in cell line models of BL. Methods: The in vitro effect of idelalisib or BEZ-235 was investigated in BL cell lines including Raji, Raji 2R and Raji 4RH (rituximab-chemotherapy resistant), Raji 7R and Raji 8RH (rituximab resistant), Ramos and Daudi. Cell viability following inhibitor exposure was assessed by Alamar blu and cell-titer glo assays. The effect of inhibitor exposure on cell cycle progression was determined by flow cytometry using propidium iodide staining. Inhibition of Akt activation following inhibitor exposure was determined using phospho-flow cytometry. The activity of cytotoxic chemotherapeutic agents following inhibition by idelalisib or BEZ-235 was assessed using Alamar blu and cell titer glo assays. Results: In vitro exposure of BL cell lines to idelalisib in concentrations from 0.1-100µM for 24, 48 or 72 hours resulted in a dose and time-dependent decrease in viable cells in all cell lines tested with IC50 concentrations of 60-300uM. Pre-treatment with the pan-caspase inhibitor QVD resulted in a small reversal in the decrease in cell viability suggesting only a minimal portion of the activity was caspase dependent. When induction of apoptosis was measured using annexin V-propidium iodide staining, little induction of apoptosis was observed with single agent idelalisib at concentrations up to 100uM. Determination of cell cycle progression following exposure to idelalisib at 1, 10, 50 or 100 uM for 24, 48 or 72 hours indicated a time and dose dependent cell cycle arrest in all cell lines. In chemotherapy-sensitive cell lines the arrest was primarily noted in G1, while the chemotherapy-resistant Raji 2R and Raji 4RH cell lines exhibited arrest primarily in G2/M. A significant reduction in cell viability following chemotherapy exposure for 48 hours was noted in chemotherapy resistant Raji 2R cells following pre-treatment for 48 hours with idelalisib 10uM compared to non-idelalisib exposed cells (doxorubicin 10uM 55% vs 77%, p<0.001; vincristine 0.05uM, 48% vs 61%, P<0.001). At higher idelalisib pre-treatment concentrations (50uM) additional synergistic activity was observed in Raji 2R cells (cisplatin 48% vs 61%, p<0.001; dexamethasone 67% vs 87%, p<0.01). To further assess the effect of dual inhibition of PI3K and mTOR, cell lines were exposed to the dual inhibitor BEZ-235. BEZ-235 exhibited a more potent decrease in cell viability compared to idelalisib with activity at nM concentrations. Unlike idelalisib, exposure to BEZ-235 resulted in significant induction of apoptosis by Annexin V-propidium iodide staining. BEZ-235 also exhibited synergistic activity in combination with chemotherapy in all cell lines. At equivalent dosing, BEZ-235 exposure resulted in a more significant decrease in Akt phosphorylation compared to idelalisib as determined by flow cytometry for p-Akt at Ser and Thr phosphorylation sites. Conclusions: Chemotherapy sensitive and resistant BL cell line models are susceptible to inhibition of the PI3K/Akt/mTOR pathway. Targeted inhibition of this pathway leads to a decrease in AKT activation, decrease in cell viability, cell cycle arrest and an increase in sensitivity to cytotoxic chemotherapeutic agents. Broader inhibition of both PI3K and mTOR is more effective than more targeted inhibition of PI3K-delta alone. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 6 (4) ◽  
pp. 453-457 ◽  
Author(s):  
Alain Pierre Théon ◽  
Loretta Metzger ◽  
Stephen Griffey

Cell proliferation in canine, feline, and equine tumors was evaluated using immunohistochemical detection of in vitro 5–bromodeoxyuridine (BrdU) incorporation, proliferating cell nuclear antigen (PCNA), and interchromatin-associated antigen (p105). Ten tumors in each species were analyzed. The tumor proliferative fraction (PF) was defined as the percentage of labeled nuclei for 5,000 tumor nuclei counted. Immunoreactivity was observed with all techniques in all species. A good correlation was observed between the proliferative fractions measured with the BrdU (PFBrdU) and PCNA (PFPCNA) techniques ( rs = 0.523, P = 0.0026). There was no correlation between the PFs measured with the BrdU (PFBrdU) and p105 (PFP105) techniques. Using the median values obtained from the different approaches as cutoff points to define slowly and rapidly proliferating tumors, there was an 80% agreement ( P = 0.009) between PFBrdU and PFPCNA and no agreement between PFBrdU and PFP105 The results of this study indicate that both BrdU and PCNA labeling methods can be used reliably for identifying proliferating cells in animal tumors. In addition, PCNA could be used to replace the BrdU method to assess tumor proliferative fraction because it does not require pretreatment of tissues.


Reproduction ◽  
2003 ◽  
pp. 469-480 ◽  
Author(s):  
A Boos ◽  
V Janssen ◽  
C Mulling

Placental growth can be achieved by either cellular proliferation or hypertrophy. Tissue regeneration and the nutrition of the fetus via embryotrophe require high rates of cellular turnover and the so-called pre-term 'maturation' of the placenta is correlated with a reduction of maternal crypt epithelial cells. Placentomes of 45 pregnant cows were collected from an abattoir to assess the role of proliferation and apoptosis in placental physiology and pathology. Placentomes were also taken from five cows undergoing premature Caesarean section and from ten naturally calving cows immediately after the expulsion of the fetus. Five of these animals had not released the fetal membranes after 12 h. Tissue sections of placentome were assessed for the Ki-67 protein; the TUNEL procedure was performed and verified by transmission electron microscopy. The maternal crypt epithelium and the fetal chorionic epithelium had a higher percentage of Ki-67-positive cells than the stroma. The percentage of Ki-67-positive cells increased significantly during pregnancy in fetal chorionic epithelium and was significantly decreased in fetal chorionic epithelium and maternal crypt epithelium after the expulsion of the fetus in comparison with tissue from month 9 of pregnancy. The number of apoptotic cells increased significantly during pregnancy in maternal crypt epithelium, maternal stroma and fetal chorionic epithelium as detected in slaughtered animals. Significantly more apoptotic fetal chorionic epithelial cells were found in animals retaining their fetal membranes in comparison with prepartum cattle during month 9 of pregnancy, at premature section and in animals releasing the fetal membranes completely. The results strongly indicate that bovine placentomes have cell type-specific rates of cellular turnover reflecting tissue growth, embryotrophe and placental maturation. Retention of fetal membranes is characterized by a large number of fetal chorionic epithelial cells undergoing apoptosis immediately after the expulsion of the fetus. This finding indicates that incomplete maturation of placentomes plays an important role in fetal membrane retention and that massive apoptosis after the expulsion of the fetus should be the consequence of diminished blood supply to the uterus, as verified in a recent study.


Sign in / Sign up

Export Citation Format

Share Document