scholarly journals Review of Adsorption of Fe Metal by Activated Carbon Adsorbent

Author(s):  
Fakta Ideal Zega ◽  
Rini Selly ◽  
Moondra Zubir

Many researchers have used activated carbon as adsorbents for the adsorption heavy metal. The aim of present study was to investigate the adsorption properties of activated carbon for the removal of Fe metal. A research has been conducted to determine optimal of stirring time, stirring speed, adsorbent mass and particle size on activated carbon adsorbent in adsorption Fe metal. From the literature survey that increase in stirring time, stirring speed and adsorbent mass enhancing the removal of Fe metal. The results show which is on stirring time 60 minutes, stirring speed 90 radians per minute and adsorbent mass 2 grams have a high adsorption of the heavy metals of iron. Whereas the smaller of particle size enhancing the adsorption of Fe metal. The particle size of 200 mesh is the optimal particle size for adsorption of Fe. Finally, activated carbon showed to be a good potential adsorbent for removing Fe.

Investigate the possibility of treating wastewater containing heavy metals Zn2+ with activated carbon material prepared from macadamia shell with chemical activating agent H3PO4, showing high efficiency of adsorption of Zn2+. The results of the study showed that activated carbon with H3PO4 activating agent has high adsorption capacity, capable of handling Zn2+ best at pH = 4.5, dosage 1.8 g/L and time is 120 minutes. . The results show similarities with other research results and are capable of treating wastewater containing heavy metals Zn2+.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
N. Masdiana ◽  
M. Rashid ◽  
S. Hajar ◽  
M. R. Ammar

TrikotAC filter aids is a combination of a pre-coating material PreKot™ with two adsorbents; activated carbon and lime and their characteristics were investigated in this study. TrikotAC was formulated into three different weight ratios of 5:1:94, 10:1:89 and 10:5:85, respectively. The relationship between adsorption properties and characteristics of the formulated materials particle size distribution, particle density, bulk density, and BET surface area were investigated. The results showed that the adsorption capacity for TrikotAC 10:5:85 (11.88 mg/g) was higher than for the other formulated filter aids samples, and the formulated filter aids material TrikotAC showed promising characteristic as a filter aids and adsorbent for organic compound in fabric filtration system.


2017 ◽  
Vol 17 (2) ◽  
pp. 131
Author(s):  
Emas Agus Prastyo Wibowo ◽  
Ika Sri Hardyanti ◽  
Isni Nurani ◽  
Dyan Septyaningsih Hardjono HP ◽  
Aden Dhana Rizkita

STUDI PENURUNAN KADAR LOGAM BESI (Fe) DAN LOGAM TEMBAGA (Cu) PADA AIR EMBUNG MENGGUNAKAN ADSORBEN NANOSILIKAABSTRAKPolusi limbah logam berat dalam air merupakan satu permasalahan lingkungan yang penting. Dalam mengatasi permasalahan tersebut dapat dilakukan purifikasi terhadap air tersebut. Metode yang dapat digunakan untuk purifikasi limbah sangat beragam salah satunya adalah absorpsi. Secara umum metode absorpsi telah banyak digunakan dalam purifikasi air limbah. Metode absorpsi dapat menurunkan kadar logam yang terlarut pada limbah. cair dengan cara menyerap logam-logam tersebut ke dalam permukaan absorbennya. Tujuan dilakukan penelitian ini adalah  untuk menurunkan konsentrasi logam besi (Fe) dan tembaga (Cu) menggunakan adsorben nanosilika. Penelitian ini menggunakan variabel bebas yaitu waktu pengadukan (20 menit, 40 menit, dan 60 menit). Hasil akhir filtrat air embung kemudian diukur absorbansinya menggunakan Spektrofotometer Serapan Atom. Berdasarkan hasil analisa menggunakan instrumen SSA diperoleh hasil bahwa tidak terjadi penurunan logam Fe maupun Cu. Dalam hal ini terjadi peningkatan konsentrasi dalam logam Fe maupun Cu, hal ini dikarenakan kurangnya waktu pengadukan dan pengaruh dari adsorben nanosilika.Kata Kunci: limbah, logam berat, nanosilika STUDY OF DECREASING METALS IRON (Fe) AND COPPER (Cu) ON EMBUNG WATER USE OF NANOSILICA ADSORBEN ABSTRACTHeavy waste pollution of heavy metals in the water is an important environment issue. To solve the problem, its can be purified the water. The methods that can be used for waste purification are very diverse, one of which is absorption. In general, the method of absorption has been widely used in wastewater purification. The absorption method can decrease dissolved metal content in the waste. liquid by absorbing the metals into the absorbent surface. Research has been conducted to reduce the concentration of iron (Fe) and copper (Cu) by using nanosilica adsorbent. This research used to independent variable that is stirring time (20 minutes, 40 minutes, and 60 minutes). The final result of filtrate embung water then measured its absorbance using Atomic Absorption Spectrophotometer (AAS). Based on the result of the analysis using SSA instrument, it is found that there is no decrease of Fe and Cu metals. There are several reasons for those problem such as due to lack of stirring time and the influence of nanosilica adsorbent.Keywords: Waste pollution, heavy metal, nanosilica


2019 ◽  
Vol 120 ◽  
pp. 03003
Author(s):  
Huang-Mu Lo ◽  
Kae-Long Lin ◽  
Min-Hsin Liu ◽  
Hsung-Ying Chiu ◽  
Fang-Cheng Lo

Heavy metals from the electroplating wastewater might cause environmental pollution if not well treated. Generally, carbon adsorption might be used for the final step for further trace metals removal. This study investigated the heavy metal Cu adsorption in the fixed bed column with 1, 10 and 100 mg/L influent concentration. Results showed that KAB decreased as influent Cu concentration increased from 1 to 100 mg/L while N0 increased as influent concentration increased from 1 to 100 mg/L as can be found in Adams-Bohart model. R2 was found between 0.8579 and 0.9182. In Thomas model. KTH and q0 showed the similar trend as KAB and N0 in the Adams-Bohart model. KTH decreased as influent Cu concentration increased from 1 to 100 mg/L. q0 increased as influent Cu concentration increased from 1 to 100 mg/L. R2 of regression model was found between 0.9065 and 0.9836. In Yoon-Nelson model. KYN increased as influent Cu concentration increased from 1 to 100 mg/L while τ decreased as influent Cu concentration increased from 1 to 100 mg/L. Results showed that the three models of Adams-Bohart model, Thmoas model and The Yoon-Nelson model were suitable for the description of Cu adsorption by activated carbon.


2016 ◽  
pp. 41-46
Author(s):  
V. A. Filippova ◽  
A. V. Lysenkova ◽  
V. A. Ignatenko ◽  
A. K. Dovnar

The aim of research: comparative study of adsorption capacity and selectivity of enterosorbents of different generations. Material and methods. The subject of the study is enterosorbents widely applied in clinical practice. They belong to different generations and exhibit different adsorption capacities and different doses of daily application. Results. It was found out that enterosorbents differed from one another and the latest generation had more perfect and diverse adsorption properties. The experimental data confirmed that enterosorbents of the fourth generation, in particular white carbon, whose main component is silicon dioxide exhibited a highly developed active surface and high adsorption capacity relative to highly toxic heavy metals, while its ability to bind and remove useful components (biometals and vitamin C) in organism was negligibly low. Conclusions. The enterosorbent of the fourth generation «White coal» possess high adsorption capacity toward heavy metals and simultaneously are characterized by negligibly low capacity to bind and remove bioactive compounds such as biometals and vitamin C.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Victor O. Fatokun ◽  
Femi K. Owofadeju ◽  
Oluseyi E. Ewemoje ◽  
Temitayo A. Ewemoje

Textile industries wastewater contains pollutants which vary greatly and depend on the chemicals and treatment processes used. Toxic heavy metals in wastewater are discharged into the environment, which adversely affect human, aquatic life, and natural water bodies. This study was therefore designed to investigate adsorption of heavy metal ions (Cadmium, Zinc, Manganese, Chromium and iron) in raw textile wastewater using activated carbon from Cordia millenii and Gmelina arborea wood species. Carbon structural pattern was examined using SEM equipment. Batch sorption tests were conducted in wastewater treatment by varying absorbent contact time with the sorbate from 30 to 120minutes (at 30minutes intervals) to facilitate attainment of equilibrium condition. The pore space diameter mean values were 9.28±1.22 and 4.45±1.57µm for Cordia millenii Carbon (CMC) and Gmelina arborea Carbon (GAC) respectively. It was observed that over 80% Manganese removal was achieved at 120minutes contact time for both carbon studied. Highest removal efficiencies was observed at all contact times in GAC for iron while in CMC for Chromium, Cadmium, Zinc and Manganese between 30-90minutes contact time. After 120 minutes contact time, there was insignificant difference in removal efficiency for Chromium and Manganese. However, at 30minutes contact time, percentage removal of over 60% was obtained for Manganese, implying that Manganese has high mobility towards the adsorbents surface. The activated carbons obtained from these two wood species are therefore viable options for heavy metal removal from textile effluents. Keywords— Adsorption, activated carbon, Cordia millenii carbon, Gmelina arborea carbon, heavy metals.


Investigation of the possibility of treating wastewater containing Cu2+ heavy metal with activated carbon material prepared from macadamia husk with activating K2CO3 in Optimal conditions such as temperature 6500C and burning time is 60 minutes. Survey results show that coal with the ability to handle heavy metals is best at 84.02% in optimal conditions such as pH=5 and time. Baking is 30 minutes. The results show similarities with other research results and are applicable to wastewater treatment Cu2+.


2017 ◽  
Vol 102 ◽  
pp. 443-450 ◽  
Author(s):  
Li Zhou ◽  
Qunyan Yu ◽  
Ying Cui ◽  
Fei Xie ◽  
Wenjiang Li ◽  
...  

2013 ◽  
Vol 67 (7) ◽  
pp. 1612-1619 ◽  
Author(s):  
Mohamed El Zayat ◽  
Edward Smith

Activated carbon produced from cotton stalks was examined for the removal of heavy metal contaminants. Adsorption studies in completely mixed batch reactors were used to generate equilibrium pH adsorption edges. Continuous flow experiments using the activated carbon in fixed beds were conducted to determine heavy metal breakthrough versus bed volumes treated. At given pH value in the range 5–7, the adsorption capacity was similar for copper and lead and clearly greater than for cadmium. A surface titration experiment indicated negative surface charge of the activated carbon at pH > 6, meaning that electrostatic attraction of the divalent heavy metals can occur below the pH required for precipitation. Substantive metal removal below the pH of zero charge might be due to surface complexation. Accordingly, a surface complexation model approach that utilizes an electrostatic term in the double-layer description was used to estimate equilibrium constants for the protolysis interactions of the activated carbon surface as well as equilibria between background ions used to establish ionic strength and the sorbent surface. Pb(II) adsorption edges were best modeled using inner-layer surface complexation of Pb2+, while Cd(II) and Cu(II) data were best fit by outer-layer complexes with Me2+. The full set of equilibrium constants were used as input in a dual-rate dynamic model to simulate the breakthrough curves of the target metals (Pb, Cu and Cd) from fixed bed experiments and to estimate external (or film) diffusion and internal (surface) diffusion coefficients.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1969-1972
Author(s):  
Lin Zhu ◽  
Mei Na Liang ◽  
Dao Lin Huang

With the increasing of industrialization, the heavy metals cause serious pollution of water in China. This paper reviewed the study of many kinds of new adsorbent materials remove heavy metal from pollution water, these new adsorbent including modification activated carbon, inorganic absorbent material, industrial waste, biological adsorbents and synthetic adsorbent, and pointed out the trend of development of the new adsorbent material application in the future.


Sign in / Sign up

Export Citation Format

Share Document