scholarly journals Particle-Based Fluid Surface Rendering with Neural Networks

Author(s):  
Viktória Burkus ◽  
Attila Kárpáti ◽  
László Szécsi

Surface reconstruction for particle-based fluid simulation is a computational challenge on par with the simula- tion itself. In real-time applications, splatting-style rendering approaches based on forward rendering of particle impostors are prevalent, but they suffer from noticeable artifacts. In this paper, we present a technique that combines forward rendering simulated features with deep-learning image manipulation to improve the rendering quality of splatting-style approaches to be perceptually similar to ray tracing solutions, circumventing the cost, complexity, and limitations of exact fluid surface rendering by replacing it with the flat cost of a neural network pass. Our solution is based on the idea of training generative deep neural networks with image pairs consisting of cheap particle impostor renders and ground truth high quality ray-traced images.

Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


2020 ◽  
Vol 12 (15) ◽  
pp. 2353
Author(s):  
Henning Heiselberg

Classification of ships and icebergs in the Arctic in satellite images is an important problem. We study how to train deep neural networks for improving the discrimination of ships and icebergs in multispectral satellite images. We also analyze synthetic-aperture radar (SAR) images for comparison. The annotated datasets of ships and icebergs are collected from multispectral Sentinel-2 data and taken from the C-CORE dataset of Sentinel-1 SAR images. Convolutional Neural Networks with a range of hyperparameters are tested and optimized. Classification accuracies are considerably better for deep neural networks than for support vector machines. Deeper neural nets improve the accuracy per epoch but at the cost of longer processing time. Extending the datasets with semi-supervised data from Greenland improves the accuracy considerably whereas data augmentation by rotating and flipping the images has little effect. The resulting classification accuracies for ships and icebergs are 86% for the SAR data and 96% for the MSI data due to the better resolution and more multispectral bands. The size and quality of the datasets are essential for training the deep neural networks, and methods to improve them are discussed. The reduced false alarm rates and exploitation of multisensory data are important for Arctic search and rescue services.


2020 ◽  
Vol 20 (11) ◽  
pp. 6603-6608 ◽  
Author(s):  
Sung-Tae Lee ◽  
Suhwan Lim ◽  
Jong-Ho Bae ◽  
Dongseok Kwon ◽  
Hyeong-Su Kim ◽  
...  

Deep learning represents state-of-the-art results in various machine learning tasks, but for applications that require real-time inference, the high computational cost of deep neural networks becomes a bottleneck for the efficiency. To overcome the high computational cost of deep neural networks, spiking neural networks (SNN) have been proposed. Herein, we propose a hardware implementation of the SNN with gated Schottky diodes as synaptic devices. In addition, we apply L1 regularization for connection pruning of the deep spiking neural networks using gated Schottky diodes as synap-tic devices. Applying L1 regularization eliminates the need for a re-training procedure because it prunes the weights based on the cost function. The compressed hardware-based SNN is energy efficient while achieving a classification accuracy of 97.85% which is comparable to 98.13% of the software deep neural networks (DNN).


2021 ◽  
Vol 37 (2) ◽  
pp. 123-143
Author(s):  
Tuan Minh Luu ◽  
Huong Thanh Le ◽  
Tan Minh Hoang

Deep neural networks have been applied successfully to extractive text summarization tasks with the accompany of large training datasets. However, when the training dataset is not large enough, these models reveal certain limitations that affect the quality of the system’s summary. In this paper, we propose an extractive summarization system basing on a Convolutional Neural Network and a Fully Connected network for sentence selection. The pretrained BERT multilingual model is used to generate embeddings vectors from the input text. These vectors are combined with TF-IDF values to produce the input of the text summarization system. Redundant sentences from the output summary are eliminated by the Maximal Marginal Relevance method. Our system is evaluated with both English and Vietnamese languages using CNN and Baomoi datasets, respectively. Experimental results show that our system achieves better results comparing to existing works using the same dataset. It confirms that our approach can be effectively applied to summarize both English and Vietnamese languages.


10.29007/p655 ◽  
2018 ◽  
Author(s):  
Sai Prabhakar Pandi Selvaraj ◽  
Manuela Veloso ◽  
Stephanie Rosenthal

Significant advances in the performance of deep neural networks, such as Convolutional Neural Networks (CNNs) for image classification, have created a drive for understanding how they work. Different techniques have been proposed to determine which features (e.g., image pixels) are most important for a CNN’s classification. However, the important features output by these techniques have typically been judged subjectively by a human to assess whether the important features capture the features relevant to the classification and not whether the features were actually important to classifier itself. We address the need for an objective measure to assess the quality of different feature importance measures. In particular, we propose measuring the ratio of a CNN’s accuracy on the whole image com- pared to an image containing only the important features. We also consider scaling this ratio by the relative size of the important region in order to measure the conciseness. We demonstrate that our measures correlate well with prior subjective comparisons of important features, but importantly do not require their human studies. We also demonstrate that the features on which multiple techniques agree are important have a higher impact on accuracy than those features that only one technique finds.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Keyu Yang ◽  
Yunjun Gao ◽  
Lei Liang ◽  
Song Bian ◽  
Lu Chen ◽  
...  

Text classification is a fundamental task in content analysis. Nowadays, deep learning has demonstrated promising performance in text classification compared with shallow models. However, almost all the existing models do not take advantage of the wisdom of human beings to help text classification. Human beings are more intelligent and capable than machine learning models in terms of understanding and capturing the implicit semantic information from text. In this article, we try to take guidance from human beings to classify text. We propose Crowd-powered learning for Text Classification (CrowdTC for short). We design and post the questions on a crowdsourcing platform to extract keywords in text. Sampling and clustering techniques are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network to incorporate the extracted keywords as human guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTC improves the text classification accuracy of neural networks by using the crowd-powered keyword guidance.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 459
Author(s):  
Jialu Wang ◽  
Guowei Teng ◽  
Ping An

With the help of deep neural networks, video super-resolution (VSR) has made a huge breakthrough. However, these deep learning-based methods are rarely used in specific situations. In addition, training sets may not be suitable because many methods only assume that under ideal circumstances, low-resolution (LR) datasets are downgraded from high-resolution (HR) datasets in a fixed manner. In this paper, we proposed a model based on Generative Adversarial Network (GAN) and edge enhancement to perform super-resolution (SR) reconstruction for LR and blur videos, such as closed-circuit television (CCTV). The adversarial loss allows discriminators to be trained to distinguish between SR frames and ground truth (GT) frames, which is helpful to produce realistic and highly detailed results. The edge enhancement function uses the Laplacian edge module to perform edge enhancement on the intermediate result, which helps further improve the final results. In addition, we add the perceptual loss to the loss function to obtain a higher visual experience. At the same time, we also tried training network on different datasets. A large number of experiments show that our method has advantages in the Vid4 dataset and other LR videos.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042083
Author(s):  
Shuhan Liu

Abstract Semantic segmentation is a traditional task that requires a large number of pixel-level ground truth label data sets, which is time-consuming and expensive. Recent developments in weakly-supervised settings have shown that reasonable performance can be obtained using only image-level labels. Classification is often used as an agent task to train deep neural networks and extract attention maps from them. The classification task only needs less supervision information to obtain the most discriminative part of the object. For this purpose, we propose a new end-to-end counter-wipe network. Compared with the baseline network, we propose a method to apply the graph neural network to obtain the first CAM. It is proposed to train the joint loss function to avoid the network weight sharing and cause the network to fall into a saddle point. Our experiments on the Pascal VOC2012 dataset show that 64.9% segmentation performance is obtained, which is an improvement of 2.1% compared to our baseline.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 151
Author(s):  
Xintao Duan ◽  
Lei Li ◽  
Yao Su ◽  
Wenxin Wang ◽  
En Zhang ◽  
...  

Data hiding is the technique of embedding data into video or audio media. With the development of deep neural networks (DNN), the quality of images generated by novel data hiding methods based on DNN is getting better. However, there is still room for the similarity between the original images and the images generated by the DNN models which were trained based on the existing hiding frameworks to improve, and it is hard for the receiver to distinguish whether the container image is from the real sender. We propose a framework by introducing a key_img for using the over-fitting characteristic of DNN and combined with difference image grafting symmetrically, named difference image grafting deep hiding (DIGDH). The key_img can be used to identify whether the container image is from the real sender easily. The experimental results show that without changing the structures of networks, the models trained based on the proposed framework can generate images with higher similarity to original cover and secret images. According to the analysis results of the steganalysis tool named StegExpose, the container images generated by the hiding model trained based on the proposed framework is closer to the random distribution.


Sign in / Sign up

Export Citation Format

Share Document