scholarly journals Detecting Bacterial Biofilms Using Fluorescence Hyperspectral Imaging and Various Discriminant Analyses

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2213
Author(s):  
Ahyeong Lee ◽  
Saetbyeol Park ◽  
Jinyoung Yoo ◽  
Jungsook Kang ◽  
Jongguk Lim ◽  
...  

Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.

2020 ◽  
Vol 12 (22) ◽  
pp. 3745
Author(s):  
Claude Cariou ◽  
Steven Le Moan ◽  
Kacem Chehdi

We investigated nearest-neighbor density-based clustering for hyperspectral image analysis. Four existing techniques were considered that rely on a K-nearest neighbor (KNN) graph to estimate local density and to propagate labels through algorithm-specific labeling decisions. We first improved two of these techniques, a KNN variant of the density peaks clustering method dpc, and a weighted-mode variant of knnclust, so the four methods use the same input KNN graph and only differ by their labeling rules. We propose two regularization schemes for hyperspectral image analysis: (i) a graph regularization based on mutual nearest neighbors (MNN) prior to clustering to improve cluster discovery in high dimensions; (ii) a spatial regularization to account for correlation between neighboring pixels. We demonstrate the relevance of the proposed methods on synthetic data and hyperspectral images, and show they achieve superior overall performances in most cases, outperforming the state-of-the-art methods by up to 20% in kappa index on real hyperspectral images.


2021 ◽  
Vol 11 (19) ◽  
pp. 9124
Author(s):  
Hongzhe Jiang ◽  
Liancheng Ye ◽  
Xingpeng Li ◽  
Minghong Shi

Chinese walnuts have extraordinary nutritional and organoleptic qualities, and counterfeit Chinese walnut products are pervasive in the market. The aim of this study was to investigate the feasibility of hyperspectral imaging (HSI) technique to accurately identify and visualize Chinese walnut varieties. Hyperspectral images of 400 Chinese walnuts including 200 samples of Ningguo variety and 200 samples of Lin’an variety were acquired in range of 400–1000 nm. Spectra were extracted from representative regions of interest (ROIs), and principal component analysis (PCA) of spectra showed that the characteristic second principal component (PC2) was potentially effective in variety identification. The PC transformation was also conducted to hyperspectral images to make an exploratory visualization according to pixel-wise PC scores. Three different modeling methods including partial least squares-discriminant analysis (PLS-DA), k-nearest neighbor (KNN), and support vector machine (SVM) were individually employed to develop classification models. Results indicated that raw full spectra constructed PLS-DA model performed best with correct classification rates (CCRs) of 97.33%, 95.33%, and 92.00% in calibration, cross-validation, and prediction sets, respectively. Successful projects algorithm (SPA), competitive adaptive reweighted sampling (CARS), and PC loadings were individually used for effective wavelengths selection. Subsequently, simplified PLS-DA model based on wavelengths selected by CARS yielded the best 96.33%, 95.67% and 91.00% CCRs in the three sets. This optimal CARS-PLS-DA model acquired a sensitivity of 93.62%, a specificity of 88.68%, the area under the receiver operating characteristic curve (AUC) value of 0.91, and Kappa coefficient of 0.82 in prediction set. Classification maps were finally generated by classifying the varieties of each pixel in multispectral images at CARS-selected wavelengths, and the general variety was then readily discernible. These results demonstrated that features extracted from HSI had outstanding ability, and could be applied as a reliable tool for the further development of an on-line identification system for Chinese walnut variety.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2020 ◽  
Vol 2 (2) ◽  
pp. 29-38
Author(s):  
Abdur Rohman Harits Martawireja ◽  
Hilman Mujahid Purnama ◽  
Atika Nur Rahmawati

Pengenalan wajah manusia (face recognition) merupakan salah satu bidang penelitian yang penting dan belakangan ini banyak aplikasi yang menerapkannya, baik di bidang komersil ataupun di bidang penegakan hukum. Pengenalan wajah merupakan sebuah sistem yang berfungsikan untuk mengidentifikasi berdasarkan ciri-ciri dari wajah seseorang berbasis biometrik yang memiliki keakuratan tinggi. Pengenalan wajah dapat diterapkan pada sistem keamanan. Banyak metode yang dapat digunakan dalam aplikasi pengenalan wajah untuk keamanan sistem, namun pada artikel ini akan membahas tentang dua metode yaitu Two Dimensial Principal Component Analysis dan Kernel Fisher Discriminant Analysis dengan metode klasifikasi menggunakan K-Nearest Neigbor. Kedua metode ini diuji menggunakan metode cross validation. Hasil dari penelitian terdahulu terbukti bahwa sistem pengenalan wajah metode Two Dimensial Principal Component Analysis dengan 5-folds cross validation menghasilkan akurasi sebesar 88,73%, sedangkan dengan 2-folds validation akurasi yang dihasilkan sebesar 89,25%. Dan pengujian metode Kernel Fisher Discriminant dengan 2-folds cross validation menghasilkan akurasi rata rata sebesar 83,10%.


2011 ◽  
Vol 317-319 ◽  
pp. 150-153
Author(s):  
Wan Li Feng ◽  
Shang Bing Gao

In this paper, a reformative scatter difference discriminant criterion (SDDC) with fuzzy set theory is studied. The scatter difference between between-class and within-class as discriminant criterion is effective to overcome the singularity problem of the within-class scatter matrix due to small sample size problem occurred in classical Fisher discriminant analysis. However, the conventional SDDC assumes the same level of relevance of each sample to the corresponding class. So, a fuzzy maximum scatter difference analysis (FMSDA) algorithm is proposed, in which the fuzzy k-nearest neighbor (FKNN) is implemented to achieve the distribution information of original samples, and this information is utilized to redefine corresponding scatter matrices which are different to the conventional SDDC and effective to extract discriminative features from overlapping (outlier) samples. Experiments conducted on FERET face databases demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


2018 ◽  
Vol 34 (5) ◽  
pp. 789-798 ◽  
Author(s):  
Yuechun Zhang ◽  
Jun Sun ◽  
Junyan Li ◽  
Xiaohong Wu ◽  
Chunmei Dai

Abstract.In order to ensure that safe and healthy tomatoes can be provided to people, a method for quantitative determination of cadmium content in tomato leaves based on hyperspectral imaging technology was put forward in this study. Tomato leaves with seven cadmium stress gradients were studied. Hyperspectral images of all samples were firstly acquired by the hyperspectral imaging system, then the spectral data were extracted from the hyperspectral images. To simplify the model, three algorithms of competitive adaptive reweighted sampling (CARS), variable combination population analysis (VCPA) and bootstrapping soft shrinkage (BOSS) were used to select the feature wavelengths ranging from 431 to 962 nm. Final results showed that BOSS can improve prediction performance and greatly reduce features when compared with the other two selection methods. The BOSS model got the best accuracy in calibration and prediction with R2c of 0.9907 and RMSEC of 0.4257mg/kg, R2p of 0.9821, and RMSEP of 0.6461 mg/kg. Hence, the method of hyperspectral technology combined with the BOSS feature selection is feasible for detecting the cadmium content of tomato leaves, which can potentially provide a new method and thought for cadmium content detection of other crops. Keywords: Feature selection, Hyperspectral image technology, Non-destructive analysis, Regression model, Tomato leaves.


Sign in / Sign up

Export Citation Format

Share Document