scholarly journals OPTIMAL INDUCTOR DESIGN FOR SURFACE HARDENING OF CYLINDRICAL BILLETS BASED ON NUMERICAL TWO-DIMENSIONAL MODEL

Author(s):  
Yuliya Edgarovna Pleshivtseva ◽  
Anton Valerjevich Popov ◽  
Mariya Aleksandrovna Popova ◽  
Maxim Yurjevich Derevyanov

Contemporary industrial production widely uses induction heating prior to the plastic deformation and heat treatment operations due to the benefits it provides in comparison with other types of heating technologies. In order to increase the efficiency of induction heating units and develop their operation mode, the research should be directed towards new design solutions in optimizing constructive parameters of inductors and control algorithms of heating processes. The main goal of the research is developing the best inductor design, which provides maximum temperature uniformity in the surface layer of the billet at the end of heating time. There has been formulated the problem of the inductor unit optimal design with respect to steel cylindrical billets, which can be solved by using the alternance method of parametric optimization of the systems with distributed parameters. Design parameters of the induction heating installation that include the geometry features and the current of power supply are considered as optimized parameters. Software package FLUX was used for developing 2D numerical model of interrelated magnetic and temperature fields in the process of induction heating to describe the system ‘induction heater - billet’. The results of numeric solution of the problem of optimal design have been analyzed.

2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


2014 ◽  
Vol 698 ◽  
pp. 203-208
Author(s):  
Yuliya Pleshivtseva ◽  
Stepan Korshikov ◽  
Evgenjj Makarov

Most high duty parts used in various fields of productions are forged parts made of steel. The conventional forging process chains include an induction heating systems and hot forming equipment. The large amount of consumed energy and an excess of material (flash) are the main factors motivating necessity to optimize the industrial technologies of metal hot forming. A significant economical effect can be achieved through optimization of heating modes and design parameters of induction heaters on the basis of modern optimal control theory for distributed parameters systems. The aim of the presented research is a problem-oriented simulation of induction heating stage in the forging chain. 2D ANSYS model provides FEM analysis of interrelated electromagnetic, temperature and thermal stress fields during induction heating of a steel cylindrical billet before its hot forming. The model has interface adapted to optimization procedures; it provides more options for variation of the heating system parameters or billet geometry and material properties, and for evaluating the process optimization abilities.


2013 ◽  
Vol 562-565 ◽  
pp. 1267-1272
Author(s):  
Jian Jun Zhi ◽  
E Zhen Chen ◽  
Yu Cai Che ◽  
Qi Ren Zhuang

In order to obtain uniform temperature distribution in an embossing mold heated by induction used for replica of plastic gratings, temperature fields in the mold are analyzed by using electromagnetic-thermal coupling field of ANSYS software. The results indicate that the air gap between the induction heating coils and heating element, and the coils current density, have a great influence on the temperature distribution, while the exciting frequency has little. When an exciting current of 1636 A*N, frequency 25 kHz and heating time as 70 seconds, the optimal air gap width is of 4 to 5 mm. At the same time, reduce the exciting current densities can improve temperature uniformity on mold surface.


2015 ◽  
Vol 792 ◽  
pp. 462-467 ◽  
Author(s):  
Yuliya Pleshivtseva ◽  
Bernard Nacke ◽  
Anton Popov

One of the most widespread methods of heating is induction mass heating because it offers certain advantages over similar technologies, including convectional and electrical heating. A significant economical effect can be achieved through optimization of heating modes and design parameters of induction heaters on the basis of modern optimal control theory for distributed parameters systems. The paper is devoted to the numerical simulation and optimal with respect to typical quality criteria control of thermal modes for metals induction heating before hot forming operations. Two-dimensional non-linear time-optimal control problem, problem of maximum heating accuracy and problem of minimum energy consumption are formulated and reduced to the mathematical programming problems. Optimization procedures are based on the developed at SamSTU alternance method of optimal control theory for distributed parameters systems. 2D FLUX code provides FEM analysis of interrelated electromagnetic and temperature fields during induction heating of a cylindrical billet before its hot forming. The model integrated into optimization procedures provides options for variation of the heating system parameters or billet geometry, and for evaluating the process optimization abilities. Computational results for optimal heating of aluminum cylindrical billets are shown and analyzed.


Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


2019 ◽  
Vol 1 (3) ◽  
pp. 1-10
Author(s):  
Mikhail M. Konstantinov ◽  
Ivan N. Glushkov ◽  
Sergey S. Pashinin ◽  
Igor I. Ognev ◽  
Tatyana V. Bedych

In this paper we consider the structural and technological process of the combine used in the process of separate harvesting of grain crops, as well as a number of its parameters. Among the main units of the combine, we allocate a conveyor and devices for removing beveled stems from under the wheels of the vehicle. The principle of operation of the conveyor at different phases of the Reaper and especially the removal of cut stems from under the wheels of the vehicle during operation of the Reaper. The results of theoretical studies on the establishment of the optimal design of the parameters of the belt conveyor are presented, the ranges of their optimal values are considered and determined. Studies on the establishment of optimal parameters of the screw divider in the Reaper, which is the main component of the device for removal of beveled stems, are presented. Taking into account the optimal design and mode of operation of the screw divider, the correct work is provided to remove the cut stems from under the wheels of the harvester.


2019 ◽  
Vol 56 (4) ◽  
pp. 750-758
Author(s):  
Nicolae Navodariu ◽  
Mihai Branzei ◽  
Robert Ciocoiu ◽  
Ion Ciuca ◽  
Razvan Coman ◽  
...  

Flame straightening is a technology process used to eliminate deformations. This method relies on local heating of the material to correct geometry or damaged parts. In the local automobile services its main use is for repairs of less critical deformed components. The maximum temperature and thermal gradient, heating time, cooling rate and number of heating cycles affect the mechanical properties since local heating can alter material microstructure. The aim of this research was to determine the mechanical characteristics of thin steel plates repaired by local heating associated with plastic deformation (similar to hot working) and cold straightening (similar to local cold working) for automotive side and door panels made of structural steel. Thin sheet plates, 0.9mm thickness, were deformed by impact and repaired by local heating using the flame and induction heating then plastically deformed while hot as well as straightened without heating. The heat repaired samples were studied by light microscopy to determine microstructure change and samples were tensile tested to determine their mechanical characteristics. Local excessive grain growth generates anisotropy, the assembly behaves as a composite material with regions that show significant plastic deformations while others little or no deformations at al. Without procedures adjusted to each material repairs involving heating are to be avoided, cold working should be employed when replacement is not possible.


Sign in / Sign up

Export Citation Format

Share Document