scholarly journals Conductivity Studies on K-Carrageenan-Methyl Cellulose Blend as Bio-Polymer Electrolyte

2020 ◽  
Vol 17 (2) ◽  
pp. 119
Author(s):  
Rosnah Zakaria ◽  
Ab Malik Marwan Ali

Solid polymer-based electrolyte materials are a great interest due to their many interesting characteristics such as flexibility and it is easily prepared into films with a large surface area. Two sets of k-carrageenan-methyl cellulose samples were prepared using the solution casting method. Set 1, the wt% of k-Carrageenan was fixed at 0.1 wt%, while methyl cellulose and NH4I was varied. Set 2, the wt% of methyl-cellulose was fixed to 0.1 wt% and the carrageenan and NH4I was varied. The functional group of samples were studied using FTIR spectroscopy and the ionic conductivity were studied using impedance spectroscopy, EIS at room temperature. FTIR spectra from set 1 show a small hump at between the 1500 cm-1 to 1000 cm-1 spectra’s which O=S=O symmetrical vibration from methyl cellulose component. This hump was shifted to higher wavenumber due to the increasing of NH4I wt% in the samples. The second region of set 2’s spectra shows the wavenumber between of 2000 cm-1 to 1500 cm-1 is the deformation of H-O-H band interactions and its wavenumber decreasing as the addition of salts increasing. The third region of spectra between 1500 cm-1 to 1000 cm-1 represents the band of O=S=O symmetrical vibration. This bands shifted to the lower wavenumber due to addition of salts and it became less intense towards salt addition. On the other hand, the best conductivity is 6.00 x 10-8 S cm-1 which belongs to B2 of set 2 with a composition of 0.3 wt% k-carrageenan with 0.1 wt% methylcellulose and 0.6 wt% NH4I salt and the lowest conductivity is 3.19 x 10-9 S cm-1 which its composition is 0.1 wt% k-carrageenan with 0.4 wt% methylcellulose and 0.5 wt% NH4I salt in sample D1 of set 1. As a conclusion, the optimum component by weight percentage of k-carrageenan: methyl cellulose: NH4I is 0.3:0.1:0.6.

2006 ◽  
Vol 949 ◽  
Author(s):  
Xiaobing Shan ◽  
Xin Yang ◽  
Kewei Zhang ◽  
Zhongyang Cheng

ABSTRACTBy using conventional solution casting method, a flexible ceramic [CaCu3Ti4O12 (CCTO)]-Polymer [P(VDF-TrFE)] composite has been fabricated. The CCTO ceramic powders with a relative uniform size were prepared by traditional powder processing method. The dielectric properties of these films with different CCTO fractions were determined. The process was optimized to achieve high dielectric constant. A dielectric constant about 510 at room temperature and 1240 at 95 °C at 1 kHz for 6 layer hot compression was obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
N. B. Rithin Kumar ◽  
Vincent Crasta ◽  
Rajashekar F. Bhajantri ◽  
B. M. Praveen

Polymer composites of ZnO and WO3 nanoparticles doped polyvinyl alcohol (PVA) matrix have been prepared using solvent casting method. The microstructural properties of prepared films were studied using FTIR, XRD, SEM, and EDAX techniques. In the doped PVA, many irregular shifts in the FTIR spectra have been observed and these shifts in bands can be understood on the basis of intra/intermolecular hydrogen bonding with the adjacent OH group of PVA. The chemical composition, phase homogeneity, and morphology of the polymer composites of the polymer film were studied using EDAX and SEM. These data indicate that the distribution of nanosized ZnO and WO3 dopants is uniform and confirm the presence of ZnO and WO3 in the film. The crystal structure and crystallinity of polymer composites were studied by XRD. It was found that the change in structural repositioning and crystallinity of the composites takes place due to the interaction of dopants and also due to complex formation. The mechanical studies of doped polymer films were carried out using universal testing machine (UTM) at room temperature, indicating that the addition of the ZnO and WO3 with weight percentage concentration equal to 14% increases the tensile strength and Young’s modulus.


2013 ◽  
Vol 856 ◽  
pp. 118-122 ◽  
Author(s):  
A.S. Samsudin ◽  
M.I.N. Isa

Solid biopolymer electrolytes (SBE) comprising carboxymethyl cellulose (CMC) with NH4Br-EC were prepared by solution casting method. The samples were characterized by impedance spectroscopy (EIS) and sample containing 25wt. % of NH4Br exhibited the highest room temperature conductivity of 1.12 x 10-4S/cm for salted CMC based SBE system. The ionic conductivity increased to 3.31 x 10-3S/cm when 8 wt. % of ethylene carbonate (EC) was added to the highest conductivity. The conductivity-temperature of plasticized SBE system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The influence of EC addition on unplasticized CMC based SBE was found to be dependent on the number and the mobility of the ions. This results revealed that the influence of plasticizer (EC) which was confirmed play the significant role in enhancement of ionic conductivity for SBE system.


Author(s):  
A.S.A Khiar ◽  
S. Mat Radzi ◽  
N. Abd Razak

Lauroyl-chitosan/poly(methylmethacrylate)-lithium trifluorosulfonate (LiCF3SO3) polymer electrolytes has been prepared by the solution casting method. Ionic conductivity analysis was conducted over a wide range of frequency between 50 Hz-1 MHz using impedance spectroscopy to evaluate the dielectric properties and conductivity of the sample. Sample with 30 wt% of LiCF3SO3 showed the highest conductivity of 7.59 ± 3.64 x 10-4 Scm-1 at room temperature. Complex permittivity for real (εr), imaginary (εi) and electrical modulus for real (Mr) and imaginary (Mi) part was determined and plotted. The relaxation time, τ for these samples was determined and the plot shows that τ decreases with conductivity of the complexes.


2016 ◽  
Vol 78 (6-5) ◽  
Author(s):  
A. S. Samsudin ◽  
M. I. N. Isa

This paper present the development of plasticized solid bio-electrolytes (PSBs) which has been accomplished by incorporating various composition of plasticizer namely ethylene carbonate (EC) with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer–salt ionic conduction of PSBs has been analyzed by electrical impedance spectroscopy. Plasticization using EC in PSBs system assists the enhancement of NH4Br dissociation and therefore increases the protonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Br was achieved at 1.12 x 10-4 Scm-1 and improved to 3.31 x 10-3 Scm-1 when EC was added in PSBs system. The ionic conductivity-temperature for PSBs system was found to obey the Arrhenius relationships where the ionic conductivity increases with temperature. The solid-state proton batteries were assembled with the formation of Zn + ZnSO4.7H2O || highest conducting PSBs system || MnO2 and achieve with a maximum open circuit voltage (OCV) of 1.48 V at room temperature and showed good in rechargeablity performance with more than 10 cycles.


2012 ◽  
Vol 501 ◽  
pp. 29-33 ◽  
Author(s):  
Narges Ataollahi ◽  
Azizan Ahmad ◽  
H. Hamzah ◽  
M.Y.A. Rahman ◽  
Mohamed Nor Sabirin

Blend-based polymer electrolytes composed of PVDF-HFP/MG-49 (70/30) and LiClO4 as lithium salt has been studied. Solution casting method was applied to prepare the polymer electrolyte. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the electrolyte films. The maximum value of 2.51×10ˉ6 S cm-1 was obtained at ambient temperature for the 30 wt. % of LiClO4 and the conductivity increased to 1.10×10ˉ3 S cm-1 by increasing the temperature up to 383 K. FTIR spectra demonstrated that complexation occurred between the polymers and lithium salt.


2019 ◽  
Vol 31 (9) ◽  
pp. 2101-2106
Author(s):  
A.F. Mazlan ◽  
S.H. Loh ◽  
W.M.A.W.M. Khalik

This study report the optimal condition of an extraction method for caffeine residue analysis in water. C18 was impregnated with cellulose triacetate by using a solution casting method to produce a thin film. Optimization work was performed based on a 23-full factorial central composite design, which was subjected to salt addition, extraction time, and stirring rate as the main parameters. The optimum condition suggested by the model was as follows; salt addition (0.6 %, m/v), extraction time (11 min) and stirring rate (300 rpm). The generated model and 2-way interaction were significant at p < 0.05. Detection and quantification limits of the developed method were calculated at 0.06 and 0.21 ng/mL, respectively. The thin film displayed exceptional recovery (83.90-98.50 %) and repeatability (7.71-12.40 % RSD) at two levels of concentration.


2015 ◽  
Vol 1112 ◽  
pp. 275-278 ◽  
Author(s):  
Fatin Nabella Zulkefli ◽  
S. Navaratnam ◽  
Azizah Hanom Ahmad

In the present study, proton conducting biopolymer electrolyte systems based on corn starch and NH4SCN salt were prepared using solution casting method. The sample with 30 wt.% NH4SCN exhibited the highest ionic conductivity of 5.54 x 10-3S cm-1at room temperature. Temperature-dependence ionic conductivity relationship obeys Arrhenius model and minimum activation energy of 0.28 eV was obtained for the highest conducting composition.


Author(s):  
J. N. Turner ◽  
D. N. Collins

A fire involving an electric service transformer and its cooling fluid, a mixture of PCBs and chlorinated benzenes, contaminated an office building with a fine soot. Chemical analysis showed PCDDs and PCDFs including the highly toxic tetra isomers. Guinea pigs were chosen as an experimental animal to test the soot's toxicity because of their sensitivity to these compounds, and the liver was examined because it is a target organ. The soot was suspended in 0.75% methyl cellulose and administered in a single dose by gavage at levels of 1,10,100, and 500mgm soot/kgm body weight. Each dose group was composed of 6 males and 6 females. Control groups included 12 (6 male, 6 female) animals fed activated carbon in methyl cellulose, 6 males fed methyl cellulose, and 16 males and 10 females untreated. The guinea pigs were sacrificed at 42 days by suffocation in CO2. Liver samples were immediately immersed and minced in 2% gluteraldehyde in cacadylate buffer at pH 7.4 and 4°C. After overnight fixation, samples were postfixed in 1% OsO4 in cacodylate for 1 hr at room temperature, embedded in epon, sectioned and stained with uranyl acetate and lead citrate.


Author(s):  
Dillip Kumar Behera ◽  
Kampal Mishra ◽  
Padmolochan Nayak

In this present work, chitosan (CS) crosslink with polyaniline (PANI) with montmorilonite (MMT) called as (CSPANI/MMT) and CS crosslink with PANI without MMT called as (CS-PANI) were prepared by employing the solution casting method. Further the formation of nanocomposites CS-PANI/MMT and CS-PANI were investigated using XRD, FTIR, SEM and tensile strength. Water uptake and swelling ratio of the CS-PANI and CS-PANI/MMT were found to decrease with increase in concentration of clay. Mechanical properties of the CS-PANI and CS-PANI/MMT were assessed in terms of tensile strength and extensibility using texture analyzer. Increase in tensile strength and reduction in extensibility was reported with increase in the nanoclay content. In vitro drug release study on CS-PANI and CS-PANI/MMT indicated pronounced sustained release of doxorubicin by the incorporation of clay particles in the CS polymer matrix. Overall CSPANI/MMT nanocomposite films exhibited improved mechanical and sustained drug release properties than CS-PANI.


Sign in / Sign up

Export Citation Format

Share Document