scholarly journals The In Vitro Activity of a Range of Natural Bioflavonoids Against Five Species of Pathogenic Fish Bacteria

Author(s):  
Gil Ha Yoon ◽  
Sarah Al Jufaili ◽  
Aliya Al Ghabshi ◽  
Nashwa Al Mazrooei

The in vitro antibacterial activity of thirty two plant-derived compounds (26 crude herbal extraction and 6 pure citrus-based bioflavonoids) were tested on five different species of aquatic bacterial pathogens (Aeromonas hydrophila, A. salmonicida, A. sobria, Edwardsiella ictaluri, and E. tarda) over a period of 72 hours at 22 oC. From the agar diffusion test, six pure citrus-based bioflavonoids (apigenin, catechin, hesperidin, morin, naringin and quercetin) appeared to impact on growth when used at concentrations ranging from 10 ppm - 1000 ppm. To confirm their effect on the growth dynamics of each bacteria, a 1000 ppm dose of the appropriate bioflavonoid was added to a bacterial culture and daily changes in culture growth were measured. Quercetin was found to be bacteriocidal against all the bacterial strains. Morin was found to be bacteriocidal against only 4 out of 6 strains while hesperidin was found to affect the growth of all the tested bacterial strains, working both as a bacteriocidal and as a bacteriostatic agent. Apigenin performed poorly and had no effect on the growth of any bacterial strain while catechin and naringin were found to be generally bacteriostatic in action but had little impact on the growth of the Aeromonad strains. From the current in vitro work, it was concluded that certain plant extracts do have an impact on the growth dynamics of select bacteria and show potential as alternatives to the use of antimicrobials, but further research is required to assess their performance in vivo. 

2019 ◽  
Vol 49 (6) ◽  
Author(s):  
Guerino Bandeira Junior ◽  
Carine de Freitas Souza ◽  
Matheus Dellaméa Baldissera ◽  
Sharine Nunes Descovi ◽  
Bibiana Petri da Silveira ◽  
...  

ABSTRACT: The use of natural products, such as essential oils (EOs), is a potential novel approach to treat fish bacterial infections with a lower risk of developing resistance. There has been a number of studies reporting the activity of EOs as those obtained from the species Achyrocline satureioides, Aniba parviflora, Aniba rosaeodora, Anthemis nobilis, Conobea scoparioides, Cupressus sempervirens, Illicium verum, Lippia origanoides, and Melaleuca alternifolia against bacteria. However, there are few studies investigating the effect of these EOs against fish bacteria. Therefore, the aim of this study was to evaluate the in vitro antibacterial activity of EOs against the following fish bacteria, Aeromonas hydrophila, Citrobacter freundii, and Raoultella ornithinolytica. Additionally, the in vivo antibacterial activity of the EO L. origanoides was evaluated against experimentally induced A. hydrophila infection of silver catfish (Rhamdia quelen). The EO of L. origanoides was chosen as it showed the highest in vitro antibacterial activity, with minimum inhibitory concentrations ranging from 0.2 to 0.8 mg mL-1. This EO also presented a therapeutic success of 58.33%, on a 30 day A. hydrophila infection. Therefore, we suggested that the EO of L. origanoides may be a viable alternative as a treatment for A. hydrophila infection.


2010 ◽  
Vol 75 (2) ◽  
pp. 217-228 ◽  
Author(s):  
Dharmpal Singh ◽  
Krishan Kumar ◽  
Ramesh Kumar ◽  
Jitender Singh

A novel series of complexes of the type [M(C28H24N4)X2], where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X = Cl-, NO3 -, CH3COO- and (C28H24N4) corresponds to the tetradentate macrocyclic ligand, were synthesized by template condensation of 1,8-diaminonaphthalene and diacetyl in the presence of divalent metal salts in methanolic medium. The complexes were characterized by elemental analyses, conductance and magnetic measurements, as well as by UV/Vis, NMR, IR and MS spectroscopy. The low values of the molar conductance indicate non-electrolyte type of complexes. Based on these spectral data, a distorted octahedral geometry may be proposed for all of these complexes. All the synthesized macrocyclic complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, viz Bacillus cereus, Salmonella typhi, Escherichia coli and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains were compared with the MIC shown by the standard antibiotics linezolid and cefaclor.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


2016 ◽  
Vol 27 (22) ◽  
pp. 3616-3626 ◽  
Author(s):  
Tanumoy Saha ◽  
Isabel Rathmann ◽  
Abhiyan Viplav ◽  
Sadhana Panzade ◽  
Isabell Begemann ◽  
...  

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension–retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Sew-Fen Leu ◽  
Quan-Rong Huang ◽  
Lan-Chun Chou ◽  
Chun-Chih Huang

Three lactic acid bacterial strains,Lactobacillus plantarum, HK006, and HK109, andPediococcus pentosaceusPP31 exhibit probiotic potential as antiallergy agents, both in vitro and in vivo. However, the safety of these new strains requires evaluation when isolated from infant faeces or pickled cabbage. Multiple strains (HK006, HK109, and PP31) were subject to a bacterial reverse mutation assay and a short-term oral toxicity study. The powder product exhibited mutagenic potential inSalmonellaTyphimurium strains TA98 and TA1535 (with or without metabolic activation). In the short-term oral toxicity study, rats received a normal dosage of 390 mg/kg/d (approximately9×109 CFU/kg/d) or a high dosage of 1950 mg/kg/d (approximately4.5×1010 CFU/kg/d) for 28 d. No adverse effects were observed regarding the general condition, behaviour, growth, feed and water consumption, haematology, clinical chemistry indices, organ weights, or histopathologic analysis of the rats. These studies have demonstrated that the consumption of multiple bacterial strains is not associated with any signs of mutagenicity ofS.Typhimurium or toxicity in Wistar rats, even after consuming large quantities of bacteria.


2011 ◽  
Vol 6 (34) ◽  
pp. 6829-6834, ◽  
Author(s):  
Tao Ke ◽  
Fan Jieyu ◽  
Shi Guanying ◽  
Zhang Xingang ◽  
Zhao Haoyu ◽  
...  

2019 ◽  
Vol 31 (10) ◽  
pp. 2157-2164
Author(s):  
B. Prithivirajan ◽  
M. Jebastin Sonia Jas ◽  
G. Marimuthu

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(4-(difluoromethoxy)-3-hydroxyphenyl)prop-2-en-1-one hydrazone derivatives pronounced in this manuscript represents a new collection of antibacterial agents in addition to the DNA gyrase inhibitors. Efforts had been made to synthesize those chalcone-hydrazone derivatives (4a-e) in good yields. The literature survey confirms that nano-ZnO as heterogeneous catalyst has obtained big interest because of its ecofriendly nature and has been explored as a effective catalyst for several organic ameliorations. Subsequently, induced by way of these observations and in continuation to our interest in organic synthesis with using nanocatalyst. in vitro Antibacterial activity has been evaluated towards Gram-positive and Gram-negative bacterial strains for all compounds. So one can discover the affinity to bacterial proteins docking have a look at have been carried out for 5 synthesized derivatives, antibiotic drug and co-crystallized ligands with special mechanism of action DNA gyrase B and methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) the usage of AutoDock 4.


2017 ◽  
Vol 55 (1) ◽  
pp. 1256-1262 ◽  
Author(s):  
Pimporn Anantaworasakul ◽  
Hiroshi Hamamoto ◽  
Kazuhisa Sekimizu ◽  
Siriporn Okonogi

2016 ◽  
pp. 85-92 ◽  
Author(s):  
R. Haidar ◽  
C. Calvo-Garrido ◽  
J. Roudet ◽  
T. Gautier ◽  
A. Deschamps ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document