scholarly journals On the Irreversibility in Mechanical Systems Using a New Macroscopic Energy Structure Modeling

2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Saeed Shahsavari ◽  
Mehran Moradi ◽  
Morteza Esmaeilpour

This paper presents a macroscopic applied innovate modeling to study the performance effects of the second law of thermodynamics on the mechanical systems. To investigate the irreversibility in mechanical systems, the energy structure of the system can be studied. Some energy components relate to the reversible processes and remaining relate to the irreversible process. Exiting models are based on the studying sub structures and therefore, need a large volume of the calculations. In this paper, at first, using a macroscopic quasi-statistical approach, a new energy structure equation is extracted and by examining it’s variation in the different paths, the irreversible components as well as their structures are studied. Using the kinematic theories of dissipated energy, it can be concluded that the extracted equations have the same base as the different formulations of the second law of thermodynamics. Finally, as a mechanical system example with the possibility of irreversibility in the possible performed processes, the extracted equations are developed for viscoelasticity problems. And also the matching of the results with expected results is shown.

Author(s):  
Saeed Shahsavari ◽  
Mehran Moradi

The second law of thermodynamics is one of the most important physical laws that has been extracted by different formulations. In this paper, a new approach to study different formulations of the second law is extracted based on the energy components of the system as well as introducing the independent and dependent energy components concepts. Also, two main formulations of classical thermodynamics, and also entropy from the perspective of general physics are discussed based on the energy components of the system for constant applied energy to the system in different conditions. Kelvin-Plank and Clausius formulations, as two main classical formulations, are all assertions about impossible processes. Considering the energy structure equation of the system, as an equation to formulate the performed process using activated energy components, it is shown that different formulations of the second law of thermodynamics represent the same concept in the perspective of the energy structure. Finally, a new general formulation to the second law, based on the energy structure of the system is extracted, and the equivalence as the other formulations is shown. The presented formulation is extracted based on the dependent and independent activated energy components, and in fact, shows all possible paths in the considered energy applying to the system.


2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Saeed Shahsavari ◽  
Mehran Moradi

When a physical process is performed, identifying the generated entropy can be used to investigate the irreversibility. But for this mean, from the perspective of the Boltzmann equation, both all microstates and macrostates must be studied. In fact, it is needed that all particles energy level to be investigated. Therefore, to investigate entropy in configurationally systems using the Boltzmann equation, a very large volume of calculations is required. In this study, we try to extract a way to investigate entropy production without the need to study all particles (or sub-structures). For this purpose, at first, a macroscopic energy structure equation “as an equation that shows the energy components of the system activated in the performed process as well as their dependence” is presented. As a study on the irreversibility (or entropy production) in physical systems, its structure and components are studied. Writing equations in the energy space of the system makes it possible to study the structure of irreversibility. Then using a new macroscopic quasi-statistical approach, the irreversibility and its structure in physical processes are investigated. Macro energy components of the system are used for this investigation and energy structure is studied base on them. Finally, a new macroscopic definition of the generated entropy is extracted using a new energy structure equation as well as dependent and independent macroscopic energy component concepts. Also, why and what entropy can be generated, from the perspective of the presented macroscopic energy structure equation are studied. In fact, this paper investigates the generated entropy structure in physical systems using macroscopic system energy components and takes a new approach to why and what irreversibility is occurred during the physical process. Therefore, presented equations can be used for investigating the irreversibility in configurationally physical systems without the need to study all its sub structures. Also, from the extracted equations, it can be concluded that entropy is generated because of the existence of the dependent energy components in the energy structure equation of the system, and this generated entropy depends on the variation of these components as well as the amount of the applied energy to the system and its conditions. Due to the kinematic theory of dissipated energy, these results are in the same line with the different formulations of the second law of thermodynamics.  


1999 ◽  
Vol 13 (21n22) ◽  
pp. 2791-2793 ◽  
Author(s):  
LIQIU WANG

The application of the second law of thermodynamics to a typical irreversible process of a thermally isolated system shows that the Arithmetic-mean–geometric-mean (AM–GM) inequality, a powerful mathematical inequality, follows logically from the second law of thermodynamics, a powerful physical law.


Author(s):  
Saeed Shahsavari ◽  
Mehran Moradi

From the perspective of statistical physics (Boltzmann equation), configurational entropy can be calculated using the study of the microstates of the system. When a physical process is performed, identifying the entropy production can be used to investigate the irreversibility, but from the perspective of the Boltzmann equation, to study entropy production, both all microstates and macrostates must be studied. Therefore, a very large volume of calculations will be needed. In this report, using a new innovative energy structure equation, a new macroscopic component modeling is extracted to investigate the configurational irreversibility. To investigate the irreversibility in physical systems, the energy structure equation of the system can be studied in different paths. During performing a physical process, some activated energy components related to the reversible process and remain will be related to the irreversible process. In this report, also using a quasi-statistical approach, the structure of irreversible components is studied. When macroscopic energy components are the base of the equations, a very large volume of the needed calculations will be less than Boltzmann equation and in fact, studying all particles isn’t needed, but it is enough that a few macroscopic components to be investigated. Also, considering the theories of dissipated energy, the extracted equations have the same base as the different formulations of the second law of thermodynamics.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Shahsavari

For some physical processes, the first and second laws of thermodynamics can be at strong coupling. Also, it is possible that the familiar inequalities of macroscopic thermodynamics cannot be used in the analysis of the system, and it is needed that the inequalities rewrote as equalities. In these cases, the work, internal energy, dissipated energy, and entropy production must be considered and identified together. In this paper, the basic equation for the different coupled equations between the first and second laws of thermodynamics at strong coupling is extracted. Also, inspired by the first and second laws of thermodynamics and different approaches to the second law, a thermophysical equation for thermodynamics is extracted. This equation can be used instead of the first and second laws of thermodynamics as to the analysis of the performed process these laws must be established together. It is tried that effective internal energy, directly to be related to the entropy or vice versa, in one general equation. Also, the presented equation is in the same line with the different approaches to the second law and energy structure theory.  


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Shahsavari

What are the all final possible states that a physical system can reach when some energy is applied to the system? This question can be known as one of the physical questions that relate to the probability in physics. The second law of thermodynamics is known as the base of the probability concept that is raised in modern physics, while this concept is extracted in physical theories by different meanings. As a new approach to investigate the probability, at first, the energy space concept is extracted and then by applying the effects of the second law of thermodynamics on it, the energy structure is presented. The energy structure of the system is a new perspective to investigate the probability, and by using it, the relation between all possible accessible states, when some energy is applied to the system, can be determined.


Author(s):  
A. M. Savchenko ◽  
Yu. V. Konovalov ◽  
A. V. Laushkin

The relationship of the first and second laws of thermodynamics based on their energy nature is considered. It is noted that the processes described by the second law of thermodynamics often take place hidden within the system, which makes it difficult to detect them. Nevertheless, even with ideal mixing, an increase in the internal energy of the system occurs, numerically equal to an increase in free energy. The largest contribution to the change in the value of free energy is made by the entropy of mixing, which has energy significance. The entropy of mixing can do the job, which is confirmed in particular by osmotic processes.


Sign in / Sign up

Export Citation Format

Share Document