Analysis of operation of Oblkommunergo electric networks of Irkutsk Region

2021 ◽  
Vol 14 (3) ◽  
pp. 100-110
Author(s):  
I. V. Naumov

Analysis has been performed of the operation of electric distribution networks of ten branches of Oblkommunenergo (OKE) of Irkutsk Region [1]. Based on the data on the operation of these networks published in public media, algorithms and computer programs for the Matlab graphic editor are compiled, which are used for plotting time diagrams that characterize the operation of the electrical networks under consideration. The balance changes are shown in the transmission of electric energy into the OKE networks and from the OKE networks directly to consumers (high, medium and low voltage networks). The number of failures, the power supply interruption time and the amount of electricity undersupplied in each month of the year for each of the branches are considered. The months of the year are determined, in which the greatest and least damage occurs to the electrical networks of the OKE branches. Data are presented on the dynamics of annual wear of electric networks, planned activities and their annual implementation. The level of reliability is considered according to the established indicators of the average duration of interruptions in the transmission of electric energy in each calculated regulation period. It is shown that the combination of the main causes of failures largely depends on the natural-climatic and terrain specifics of the regions through which the routes of electric networks pass. As an example, data on the causes of failure in the electrical networks of one of the OKE branches are considered. The most and least damaged electrical networks of the considered OKE branches have been established. In conclusion, findings are formulated and recommendations are presented on minimizing outages based on the main types of failure causes for the purpose of increasing the operational reliability of the electrical networks under consideration.

2021 ◽  
Vol 2094 (5) ◽  
pp. 052012
Author(s):  
I V Naumov ◽  
S V Podyachikh

Abstract The experimental studies result on the power quality and additional power losses analysis caused by the asymmetric modes occurrence in three-phase four-wire 0.38 kV electrical networks are considered. The operating modes 38 kV networks several types simulation – with power take-off nodes distributed along the power line, and an electric network with a concentrated load is carried out. The programs have been developed that allow to assess the change in indicators characterizing asymmetric modes, as well as programs that allow us to visualize this process change. The most installing special symmetrical devices appropriate places in electric networks with a distributed load (rural electric distribution networks) and concentrated power take-off nodes electric networks (urban electric networks) have been identified to minimize losses and improve the power quality. A numerical studied indicators analysis was performed.


Author(s):  
Y. A. Sekretarev ◽  
D. A. Menyaikin

Reliability of power supply of consumers is an important task in the process of transmission and distribution of electric energy. The paper proposes a method for assessing the consequences of power failures of monoconsumers of electric energy on the example of an oil company and an adjacent power grid company. The uniqueness of the developed technique lies in the possibility of reliable calculation of reliability of power supply of complex branched electric networks without taking into account the specific scheme of power supply. The accuracy of calculations is increased due to the use of data directly studied power system, taking into account the specifics and operating conditions of specific equipment, instead of the average information. Classification of failures on the main reasons in electric networks of the oilproducing enterprise of the far North that allowed to develop actions for increase of level of reliability of power supply is made.


Vestnik MEI ◽  
2021 ◽  
pp. 91-99
Author(s):  
Ivan M. Kazymov ◽  
◽  
Boris S. Kompaneets ◽  

The aim of the study is control of commercial losses in electrical grids, especially in low voltage grids, which is one of the priority lines of activities conducted by electric network companies. The complexity of solving this problem is stemming from the difficulty of exactly locating the commercial loss occurrence place under the conditions of extensively branched low and medium voltage electrical networks. Various methods are currently used to determine the commercial loss occurrence places. However, no effective methods have been created for determining the fact and place of unaccounted electricity consumption in networks under the conditions of performing remote analysis of networks based on the data from modern electricity meters used in the automated fiscal electricity metering system. These difficulties can be overcome by developing a model of voltage distribution and change of current in distribution networks of the 0.4--35 kV nominal voltage levels. A model of voltage distribution and changes of current for a network containing unaccounted electricity consumption is proposed. The effectiveness of using the proposed model has been theoretically substantiated; its applicability limits are defined, and the accuracy of the obtained results is estimated. Graphical representation of the proposed model, which is one of the electrical network digital imaging forms, can be used to analyze electrical networks for revealing if there is unaccounted electricity consumption in them. By using the proposed model of voltage distribution and change of current in the network, it is possible to represent the electrical network as a set of electrical parameters to analyze electrical networks for the presence of commercial losses.


2021 ◽  
Vol 7 (2) ◽  
pp. 106-118
Author(s):  
Ivan M. Kazymov ◽  
Boris S. Kompaneets ◽  
Oleg N. Drobyazko

Background: The creation and distribution of technical means and complexes aimed at building effective control systems for electrical networks using information that can be collected by modern metering devices, as well as organizing work in an automated mode, is an urgent task at the present stage of development of the electric power industry in Russia and in the world. Aim: The research presented in this article is aimed at creating an effective system for monitoring the parameters of electrical energy in distribution networks of low and medium voltage levels. Methods: The study was carried out using the theoretical foundations and basic laws of electrical engineering, as well as methods of computer modeling and CAD. Results: A description of the developed system is given, the applicability of its use is graphically shown and substantiated in writing, the possibilities and prospects of application are indicated, and recommendations for practical application are given. Conclusion: The results obtained can be used by power grid companies to analyze the state and efficiency of power grids, and may also be of interest to researchers working on the creation of digital twins of power grids.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012180
Author(s):  
I V Naumov ◽  
M N Polkovskaya

Abstract The structure study, condition and 10 kV electric networks reliability level in the Irkutsk region for the period from 2016 to 2020 is carried out. The analysis is based on real data on the studied electric networks published in the open press. The Interactive Matlab system libraries and interfaces were used to calculate and analyze the studied indicator. The considered electric networks structure has investigated, algorithms and computer programs for the Matlab graphic editor are compiled with the help which changes time diagrams in the failures number, the interruptions time and the under-output electricity amount for each year months are constructed. The year months in which the highest damage occurs were determined. The electrical networks wear is considered, as well as the repair plan implementation for the main equipment. The reliability level according to the established indicators has analyzed, the main reasons for equipment failure are considered. The characteristics of improving considered electrical networks functioning are presented. Based on the conducted studies, it was found that the most damaged the considered overhead lines elements are: wires, supports, insulators, and switching devices. The characteristic reasons that lead to their damage are: wind load, damage to switching devices. The greatest damage is the Angarsky and Irkutsky branches networks characteristic (the average annual value all failures are 26.4 and 23.9%). The Kirensky and Cheremkhovsky branches networks are the least damaged annually. The obtained data probabilistic-statistical and correlation analysis, as well as the emergency outages risks analysis for the future, taking into account the seasonal component, is carried out.


Author(s):  
M. I. Fursanov

The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks) innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.). The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.


2020 ◽  
Vol 2020 (6) ◽  
pp. 43-46
Author(s):  
A.F. Zharkin ◽  
◽  
S.O. Palachov ◽  
A.G. Pazieiev ◽  
D.O. Malakhatka ◽  
...  

Ways of searching for optimal ways to improve the quality of electric energy in electric networks with dispersed unbalanced loads using zero-sequence current filters are considered, which take into account the possibility of ensuring the desired performance with minimal cost and taking into account the peculiarities of operation in emergency network conditions and ensuring electrical safety of consumers. Corresponding calculations were carried out using simulation modeling. References 6, figures 4.


Vestnik IGEU ◽  
2019 ◽  
pp. 75-83 ◽  
Author(s):  
А.В. Gadalov ◽  
S.V. Kosyakov

Analytical methods that are currently used to determine transformer substation placement in the process of planning the development of low-voltage distribution networks are based on calculating the lengths of future power lines by Euclidean distance, or methods for comparing several alternative placement options taking into account the routes of power lines. Assumptions made in this case lead to the fact that for the selected location of the substation, the total cost of the power lines connected to it may exceed the possible minimum. The use of modern GIS technologies allows simulating the routes of laying power lines on the map bypassing the existing obstacles or finding the cheapest routes for crossing them. These opportunities can be used to improve the quality of designing urban distribution networks through minimizing the construction cost of new power lines. However, the methods of organizing the solution to such a design problem have not yet found practical applications. The aim of the work is to develop a practical method of designing the placement of power substations in the GIS environment and its verification using real data. The paper uses methods of spatial modeling in the GIS environment, including methods of overlay, finding optimal paths on graphs and power grid inventory, as well as discrete optimization methods. A method of computer-aided design of transformer substation placement in urban distribution low-voltage networks is proposed and implemented as a GIS software module, which allows finding the optimal options of the placement cost at the stages of network scheme selection. The paper presents the results of the method analysis based on studying the design of the power grid scheme of Ivanovo city quarters as an example. The results confirm the possibility of using GIS to improve the quality of decisions on the choice of placement of low voltage distribution substations when designing urban electrical networks and can be used in the electrical networks CAD.


2021 ◽  
Vol 19 ◽  
pp. 85-90
Author(s):  
Priscila Costa Nascimento ◽  
◽  
Michel Girotto de Oliveira ◽  
José Carlos M. Vieira

The growth of micro and mini distributed generation and, more recently, the use of electric energy storage systems and the incentives for electric mobility are important examples of the transformations that distribution networks have been going through. In this context, this paper firstly presents the impacts of uncoordinated plug-in electric vehicles (PEVs) charging in a real Brazilian distribution system. Four scenarios were elaborated with different PEVs penetration levels and the results show increased voltage unbalance, system losses, and violations of the steady-state voltage limits, even in the presence of an automatic voltage regulator installed in the medium voltage network. Then, as the main contribution, the potential usage of automatic voltage regulation at the low voltage network was investigated to minimize the negative impacts of uncontrolled PEV charging on distribution system steady-state operation. It is important to highlight that this is not a common practice of utilities in Brazil. The obtained results showed that regulating the voltage at the low voltage side could be an effective solution to keep the voltages within statutory limits.


2021 ◽  
Author(s):  
Yuriy Lyubarskiy ◽  
Aleksandr Hrennikov

For" smart " electric networks, intelligent software tools that perform new functions and increase the level of computer support for dispatching solutions are considered. Given that one of the goals of building "smart" networks is to ensure recovery after accidents, the main focus of the textbook is on the problems of diagnosing emergency situations, intelligent monitoring of the state of electrical networks, and planning for the post-accident restoration of power supply. A new type of software simulator for dispatchers of electrical networks — a simulator for analyzing emergency situations-is considered in detail. The theoretical material is accompanied by many examples in the form of protocols for the operation of real intelligent systems. Meets the requirements of the federal state educational standards of higher education of the latest generation. For students of electric power specialties, managers and specialists of operational services of enterprises of power systems, electric and distribution networks and power stations, branches of PJSC ROSSETI, PJSC FGC UES, as well as students of advanced training courses.


Sign in / Sign up

Export Citation Format

Share Document