scholarly journals On the Rural Electric Networks Reliability Level Issue

2021 ◽  
Vol 2096 (1) ◽  
pp. 012180
Author(s):  
I V Naumov ◽  
M N Polkovskaya

Abstract The structure study, condition and 10 kV electric networks reliability level in the Irkutsk region for the period from 2016 to 2020 is carried out. The analysis is based on real data on the studied electric networks published in the open press. The Interactive Matlab system libraries and interfaces were used to calculate and analyze the studied indicator. The considered electric networks structure has investigated, algorithms and computer programs for the Matlab graphic editor are compiled with the help which changes time diagrams in the failures number, the interruptions time and the under-output electricity amount for each year months are constructed. The year months in which the highest damage occurs were determined. The electrical networks wear is considered, as well as the repair plan implementation for the main equipment. The reliability level according to the established indicators has analyzed, the main reasons for equipment failure are considered. The characteristics of improving considered electrical networks functioning are presented. Based on the conducted studies, it was found that the most damaged the considered overhead lines elements are: wires, supports, insulators, and switching devices. The characteristic reasons that lead to their damage are: wind load, damage to switching devices. The greatest damage is the Angarsky and Irkutsky branches networks characteristic (the average annual value all failures are 26.4 and 23.9%). The Kirensky and Cheremkhovsky branches networks are the least damaged annually. The obtained data probabilistic-statistical and correlation analysis, as well as the emergency outages risks analysis for the future, taking into account the seasonal component, is carried out.

2021 ◽  
Vol 14 (3) ◽  
pp. 100-110
Author(s):  
I. V. Naumov

Analysis has been performed of the operation of electric distribution networks of ten branches of Oblkommunenergo (OKE) of Irkutsk Region [1]. Based on the data on the operation of these networks published in public media, algorithms and computer programs for the Matlab graphic editor are compiled, which are used for plotting time diagrams that characterize the operation of the electrical networks under consideration. The balance changes are shown in the transmission of electric energy into the OKE networks and from the OKE networks directly to consumers (high, medium and low voltage networks). The number of failures, the power supply interruption time and the amount of electricity undersupplied in each month of the year for each of the branches are considered. The months of the year are determined, in which the greatest and least damage occurs to the electrical networks of the OKE branches. Data are presented on the dynamics of annual wear of electric networks, planned activities and their annual implementation. The level of reliability is considered according to the established indicators of the average duration of interruptions in the transmission of electric energy in each calculated regulation period. It is shown that the combination of the main causes of failures largely depends on the natural-climatic and terrain specifics of the regions through which the routes of electric networks pass. As an example, data on the causes of failure in the electrical networks of one of the OKE branches are considered. The most and least damaged electrical networks of the considered OKE branches have been established. In conclusion, findings are formulated and recommendations are presented on minimizing outages based on the main types of failure causes for the purpose of increasing the operational reliability of the electrical networks under consideration.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012130
Author(s):  
M N Polkovskaya ◽  
M A Yakupova

Abstract The paper analyses the causes of emergency outages on electric networks according to the data of the Pravoberezhny district of Irkutsk for 2008-2017, according to which 82% of failures of elements of the electric network are caused by breakdowns and equipment failure; 9% are due to the influence of external factors; 5% occurred due to natural and climatic reasons, 4% – due to other circumstances. The largest number of outages due to operational reasons occurs due to damage to cable and overhead lines. Accidents caused by the influence of external factors are mainly associated with the negative impact of people, animals and birds. Equipment failures related to natural and climatic factors are mainly due to wind or thunderstorms. Other circumstances, as a rule, include staff errors and unidentified reasons. Calculations of undersupply of electricity and economic losses caused by interruptions in power supply were made. It should be noted that in order to reduce the number of equipment failures, it is necessary to carry out timely maintenance and reconstruction of various elements of electrical networks.


2020 ◽  
Vol 14 (1) ◽  
pp. 48-54
Author(s):  
D. Ostrenko ◽  

Emergency modes in electrical networks, arising for various reasons, lead to a break in the transmission of electrical energy on the way from the generating facility to the consumer. In most cases, such time breaks are unacceptable (the degree depends on the class of the consumer). Therefore, an effective solution is to both deal with the consequences, use emergency input of the reserve, and prevent these emergency situations by predicting events in the electric network. After analyzing the source [1], it was concluded that there are several methods for performing the forecast of emergency situations in electric networks. It can be: technical analysis, operational data processing (or online analytical processing), nonlinear regression methods. However, it is neural networks that have received the greatest application for solving these tasks. In this paper, we analyze existing neural networks used to predict processes in electrical systems, analyze the learning algorithm, and propose a new method for using neural networks to predict in electrical networks. Prognostication in electrical engineering plays a key role in shaping the balance of electricity in the grid, influencing the choice of mode parameters and estimated electrical loads. The balance of generation of electricity is the basis of technological stability of the energy system, its violation affects the quality of electricity (there are frequency and voltage jumps in the network), which reduces the efficiency of the equipment. Also, the correct forecast allows to ensure the optimal load distribution between the objects of the grid. According to the experience of [2], different methods are usually used for forecasting electricity consumption and building customer profiles, usually based on the analysis of the time dynamics of electricity consumption and its factors, the identification of statistical relationships between features and the construction of models.


Author(s):  
M. А. Fursanov ◽  
A. A. Zalotoy

The issues of prospective operation of the city electric networks in the conditions of the MART GRID, which will be quite different as compared to the traditional understanding and approaches, are under consideration. This requires the selection and application of appropriate analytical criteria and approaches to assessment, analysis and control of the networks. With this regard the following criteria are recommended: in a particular case – the optimal (minimal) technological electric power consumption (losses), while in general – economically reasonable (minimal) cost value of electric power transmission. It should be also borne in mind that contemporary urban networks are actively saturated with distributed sources of small generation that have radically changed the structure of electrical networks; therefore, account for such sources is an absolutely necessary objective of management regimes of urban electric networks, both traditional and in associated with the SMART GRID. A case of the analysis and control of urban electric 10 kV networks with distributed small sources of generation has been developed and presented according to the theoretical criterion of minimum relative active power losses in the circuit as a control case. The conducted research makes it possible to determine the magnitude of the tolerance network mode from the point of the theoretical minimum. 


2021 ◽  
Vol 29 (2) ◽  
pp. 359-383
Author(s):  
Anatoly P. Dzyuba

Reducing the cost of electricity consumption by industrial enterprises is the most important area of increasing the operational efficiency of their activities. The article is devoted to the issue of reducing the cost of paying for the service component of the transport component of purchased electrical energy from industrial enterprises that have technological connection to the electrical networks of electricity producers. The article makes an empirical study of the features of the pricing of payment for the services of the transport component of purchased electrical energy for industrial enterprises connected to the electric grids of electricity producers with the identification of factors influencing the overestimation of the cost of paid electricity, and calculating such overestimations using the example of a typical schedule of electricity consumption of a machinebuilding enterprise for various regions Russia. On the basis of the developed author's indicators (tariff coefficient for electricity transportation by the level of GNP, index of tariff coefficient for electricity transportation, weighted average price for electricity transportation, index of weighted average price for electricity transportation, integral index of efficiency of GNP tariffs) study of the effectiveness of the application of tariffs for the transport of electricity for industrial enterprises connected to the electric networks of electricity producers. Based on the calculated indicators, the article groups the regions into three main groups, with the development of recommendations for managing the cost of purchasing electricity by the component of the cost of the transport component of purchased electricity in each group. As the most optimal option for reducing the cost of electricity transportation, the author proposes the introduction of demand management for electricity consumption, which will reduce the costs of industrial enterprises that pay for the transport component of purchased electricity at unfavorable tariff configurations.


Author(s):  
F. P. Shkrabets

The increase in the capacity of cleaning and construction vehicles for highcapacity and energy-intensive mines calls for an increase in the  supply voltage of cleaning and tunneling combines, as well as  transport systems: from a voltage of 660 V switched to 1140 V, and  now to 3300 V. This allows improving technical and economic  indicators for clearing and access areas, as well as improving the reliability of local Power Supply Systems (PSS). However, this  trend prevents the supply of underground electric networks with a  voltage of 6 kV, in connection with which the problem arises of  increasing the voltage of supply networks. To date, it has become  possible to apply the 10 kV voltage to the operation, which is most  acceptable for the use of electrical equipment for electrical networks  and protection devices. Leading educational, research and design  organizations were engaged in research on this issue. An analysis of the results of the research showed that switching to 10 kV voltage is  justified and timely. At the same time, 35 kV voltage is not removed  from the agenda, which is technically feasible and economically  justified, but there are problems with the safety of its operation in  underground workings, which requires appropriate refinement. This  level of voltage will improve the quality of electricity.Conclusions: 1. Application of 35 kV voltage in the underground power supply system of coal and ore mines is advisable at a depth of more than 1000 m with a maximum load of at least 1000 kVA at the  level of the stem cables.2. Application of 35 kV voltage in underground electrical networks will allow to significantly improve the quality indicators of voltage,  reliability, and economy of the system due to the current unloading  of the most important element of SES, such as stem cables.3. Analysis of the main parameters and characteristics of electrical mine electrical equipment gives reason to believe that it allows  implementing a trend of 35 kV deep input to deep horizons of mines  (mines) and placement of 35/6 kV substations on working horizons.


2019 ◽  
Vol 139 ◽  
pp. 01078 ◽  
Author(s):  
A.G. Saidkhodjaev ◽  
A.M. Najimova ◽  
A.K. Bijanov

In this article, we propose a new method for determining the maximum load of electric consumers in urban electric networks, which differs from existing methods in more accurate and reliable determination of the maximum loads. Based on the determination of the maximum loads of the objects of urban electrical networks, it is concluded that the proposed methods are determined by high accuracy and minor errors.


2019 ◽  
Vol 124 ◽  
pp. 02013 ◽  
Author(s):  
D. D. Micu ◽  
I. V. Ivshin ◽  
E. I. Gracheva ◽  
O. V. Naumov ◽  
A. N. Gorlov

This paper presents calculation of resistance of tightening contact joints of switching devices. It allows considering the technical condition of low-voltage switching equipment and to specify energy emitted in the switching device in the mode of electrical networks operation is presented in the article.


2005 ◽  
Vol 14 (05) ◽  
pp. 953-963
Author(s):  
ABDULLAH I. AL-ODIENAT ◽  
OMAR Y. RADAIDEH

In this paper, a new method for error minimization of digital Fourier filter is proposed. The proposed method is tested by operating the electrical networks at oscillatory frequency. The functional features of microprocessor protective relaying and automatic switching devices are considered. The software structure of uniprocessor protective relaying and automatic switching equipments for the 6–33 kV lines are also presented.


Author(s):  
A. Yu. Kapustsinski ◽  
S. N. Kаnstantsinava

The paper deals with the problem of increasing the efficiency of the functioning of electric networks up to 1 kV, namely, the possibility of increasing the sensitivity of protections in networks up to 1 kV, which helps to reduce the protection response currents and, accordingly, reduce the cross-section of cable and wire products. The topicality of this problem is shown and the research tasks are defined. Much attention is paid to the concept of selectivity; attention is also paid to the concepts of full and partial selectivity. “Which protective devices can be considered selective?” is a question that is considered and worked out in sufficient depth in the paper. The negative phenomena that occur when ensuring the selectivity of protections in networks up to 1 kV are systematized and described in detail. Based on a comparative analysis of the parameters of circuit breakers with release tripping devices of various types, a solution to this problem is proposed by using circuit breakers with microprocessor and semiconductor release tripping devices. Additional advantages of microprocessor-based circuit breakers are considered and indicated, as well as their disadvantages are indicated, too. The main expected positive effects from the use of circuit breakers with microprocessor release tripping devices are listed, taking into account the fact that this type of circuit breakers is considered as a complex of devices replaced by it. The article can be recommended to employees of electric power specialties working with networks up to 1 kV.


Sign in / Sign up

Export Citation Format

Share Document