scholarly journals Synthesis and structural-chemical studies of adduct of coordination supramolecular porous polymer hexaaquatribenzene-1,2,4,5- tetracarbonato-tetrairon(iii) with dipyridyl

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Usubaliyev Beybala Taji ◽  
Taghiyev D. B. ◽  
Munshiyeva M. K. ◽  
Aliyeva G. M. ◽  
Aliyeva F. B. ◽  
...  

An α, α′-dipyridyl adduct of a complex compound hexaaquatribenzene-1,2,4,5-tetracarbonatotetra iron (III) with porous structure was synthesized for the first time. According to the results of elemental, X-ray, IR-spectroscopic and differential-thermal analyses the individuality, chemical formula, thermal destruction, and form of coordination of acidic anion and dipyridyl were established. During interaction of a complex compound with dipyridyl, it completely loses all crystallization molecule of water resulting in a compound with a chemical formula of Fe4(C6H2(COO)4)3(dpy)2(dipyridyl). Using the identification of diffraction pattern the parameters of lattice cell of the complex compound were determined.

2019 ◽  
Vol 1 (3) ◽  
pp. 23
Author(s):  
B. T. Usubaliyev ◽  
D. B. Taghiyev ◽  
M. K. Munshiyeva ◽  
G. M. Aliyeva ◽  
F. B. Aliyeva ◽  
...  

An α, α′-dipyridyl adduct of a complex compound hexaaquatribenzene-1,2,4,5-tetracarbonatotetra iron (III) with porous structure was synthesized for the first time. According to the results of elemental, X-ray, IR-spectroscopic and differential-thermal analyses the individuality, chemical formula, thermal destruction, and form of coordination of acid-ic anion and dipyridyl were established. During interaction of a complex compound with dipyridyl, it completely loses all crystallization molecule of water resulting in a compound with a chemical formula of Fe4(C6H2(COO)4)3(dpy)2 (dipyridyl). Using the identification of diffraction pattern the parameters of lattice cell of the complex compound were determined.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Rafał Juroszek ◽  
Biljana Krüger ◽  
Irina Galuskina ◽  
Hannes Krüger ◽  
Martina Tribus ◽  
...  

The crystal structure of bentorite, ideally Ca6Cr2(SO4)3(OH)12·26H2O, a Cr3+ analogue of ettringite, is for the first time investigated using X-ray single crystal diffraction. Bentorite crystals of suitable quality were found in the Arad Stone Quarry within the pyrometamorphic rock of the Hatrurim Complex (Mottled Zone). The preliminary semi-quantitative data on the bentorite composition obtained by SEM-EDS show that the average Cr/(Cr + Al) ratio of this sample is >0.8. Bentorite crystallizes in space group P31c, with a = b = 11.1927(5) Å, c =21.7121(10) Å, V = 2355.60(18) Å3, and Z = 2. The crystal structure is refined, including the hydrogen atom positions, to an agreement index R1 = 3.88%. The bentorite crystal chemical formula is Ca6(Cr1.613Al0.387)Σ2[(SO4)2.750(CO3)0.499]Σ3.249(OH)11.502·~25.75H2O. The Raman spectra of bentorite from two different localities exhibit the presence of the main stretching and bending vibrations related to the sulfate group at 983 cm−1 (ν1), 1109 cm−1 (ν3), 442 cm−1 (ν2), and 601 cm−1 (ν4). Moreover, the presence of bands assigned to the symmetric Cr(OH)63− stretching mode and hydroxyl deformation vibrations of Cr–OH units at ~540 cm−1 and ~757 cm−1, respectively, may be used to distinguish between ettringite and bentorite. In situ high temperature single crystal XRD experiments show that the decomposition of bentorite starts at ca. 45 °C and that a dehydroxylation product similar to metaettringite is formed.


Author(s):  
K.-F. Hesse ◽  
F. Liebau ◽  
H.-H. Eulert

AbstractTo clarify discrepancies in the literature with regard to the water content and crystal structure of wickenburgite, chemical and thermal analyses and IR spectroscopic measurements were made and the structure was redetermined with single-crystal X-ray diffraction data. It was found that the idealised composition of the mineral is PbPbWith regard to crystal structure, that described by Lam et al. is found to be essentially correct, except for an additional H


2012 ◽  
Vol 76 (3) ◽  
pp. 725-741 ◽  
Author(s):  
N. V. Chukanov ◽  
R. Scholz ◽  
S. M. Aksenov ◽  
R. K. Rastsvetaeva ◽  
I. V. Pekov ◽  
...  

AbstractThe composition, structure, X-ray powder diffraction pattern, optical properties, density, infrared, Raman and Mössbauer spectra, and thermal properties of a homogeneous sample of metavivianite from the Boa Vista pegmatite, near Galiléia, Minas Gerais, Brazil are reported for the first time. Metavivianite is biaxial (+) with α = 1.600(3), β = 1.640(3), γ = 1.685(3) and 2Vmeas= 85(5)°. The measured and calculated densities are Dmeas= 2.56(2) and Dcalc= 2.579 g cm–3. The chemical composition, based on electronmicroprobe analyses, Mössbauer spectroscopy (to determine the Fe2+:Fe3+ratio) and gas chromatography (to determine H2O) is MgO 0.70, MnO 0.92, FeO 17.98, Fe2O326.60, P2O528.62, H2O 26.5; total 101.32 wt.%. The empirical formula is (Fe3+1.64Fe2+1.23Mg0.085Mn0.06)Σ3.015(PO4)1.98(OH)1.72·6.36H2O. Metavivianite is triclinic, P1̄, a = 7.989(1), b = 9.321(2), c = 4.629(1) Å, α = 97.34(1), β = 95.96(1), γ = 108.59(2)°, V = 320.18(11) Å3and Z = 1. The crystal structure was solved using a single-crystal techniques to an agreement index R = 6.0%. The dominant cations in the independent sites are Fe2+and Fe3+, with multiplicities of 1 and 2, respectively. The simplified crystal-chemical formula for metavivianite is Fe2+(Fe3+, Fe2+)2(PO4)2(OH,H2O)2·6H2O; the endmember formula is Fe2+Fe3+2(PO4)2(OH)2·6H2O, which is dimorphous with ferrostrunzite.


1986 ◽  
Vol 1 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Thomas C. Simonton ◽  
Rustum Roy ◽  
Sridhar Komarneni ◽  
Else Breval

Among chemically bonded ceramics (i.e., those not utilizing thermally activated diffusion for bonding) the French synthetic opal gilsonite provides an excellent existence theorem. By using optical, scanning, and electron microscopy techniques and x-ray, chemical, and differential thermal analyses, it is shown for the first time that the synthetic opal is composed of two separate phases: noncrystalline silica and crystalline (tetragonal) zirconia balls. The zirconia balls with sizes ranging from 7-50 nm appear to be present in an extraordinary regular “lattice” in the void spaces of the silica “balls” of mean size 200 nm. A comparison of the fracture toughness, Kic, data for the gilsonite and natural opal shows that the former is significantly tougher than the latter. The KIC values for gilsonite fall between those of the Corning 0337 Glass Ceramic and Wesgo Al-500 alumina, showing that surprisingly tough ceramics can be made near room temperature by resorting to chemical bonding.


2020 ◽  
Vol 6 (6(75)) ◽  
pp. 44-50
Author(s):  
R.R. Tozhiev ◽  
O.S. Bobokulova ◽  
H.Ch. Mirzakulov

The process of obtaining bischofite from Karaumbet and Barsakelmes brine by its two-stage steaming with an intermediate release of sodium chloride was studied. At the same time, calcium and sulfate ions of brine have been removed by precipitation with soda ash and its waste - distiller liquid. The individuality of magnesium chloride hexahydrate has also been confirmed by X-ray and IR spectroscopic methods of analysis. The composition and quality of 6-aqueous magnesium chloride meets the requirements of State Standard 7759-73 for commercial bischofite.


2006 ◽  
Vol 71 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Martin Pošta ◽  
Jan Čermák ◽  
Pavel Vojtíšek ◽  
Ivana Císařová

The first rhodium complexes of diphosphinoazines [{RhCl(1,2-η:5,6-η-CH=CHCH2CH2CH=CHCH2CH2)}2 {μ-R2PCH2C(But)=NN=C(But)CH2PR2] (R = Ph, Cy, Pri) were prepared by cleavage of the bridge in chloro(cycloocta-1,5-diene)rhodium(I) dimer, the analogous iridium(I) complexes were also prepared for the first time. The X-ray structures of isostructural rhodium and iridium complexes with bis(dicyclohexylphosphino)pinacoloneazine were determined. Diphosphinoazine ligands in the complexes remained in (Z,Z) configuration bridging two RhCl(C8H12) units.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


Sign in / Sign up

Export Citation Format

Share Document