scholarly journals A Dual Source Switched-Capacitor Multilevel Inverter with Reduced Device Count

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Mohammad Fahad ◽  
Mohd Tariq ◽  
Mohammad Faizan ◽  
Atib Ali ◽  
Adil Sarwar ◽  
...  

Implementing voltage boost multilevel inverter topologies for PV and fuel cell energy sources is highly advantageous. Switched-capacitor multilevel inverters (SCMLI) have a step-up feature with low device requirements and can remove the need for high gain dc-dc converters leading to reduced overall system bulk. This work proposes a dual input SCMLI to achieve an output of nineteen levels while using a low number of components and high boosting factor and self-balancing of capacitor voltages. A comprehensive analysis of the proposed structure is presented, focusing on component requirements, cost and dynamic performance. The efficiency and loss distribution during operation is also provided. The operation and real-time performance of the SCMLI have been verified by simulation. Experimental results further validate the simulation results.

2021 ◽  
Vol 6 (1) ◽  
pp. 63-73
Author(s):  
Hossein Khoun-Jahan ◽  

Cascaded multilevel inverter (CMI) topology is prevalent in many applications. However, the CMI requires many switches and isolated dc sources, which is the main drawback of this type of inverter. As a result, the volume, cost and complexity of the CMI topology are increased and the efficiency is deteriorated. This paper thus proposes a switched-capacitor-based multilevel inverter topology with half-bridge cells and only one dc source. Compared to the conventional CMI, the proposed inverter uses almost half the number of switches, while maintaining a boosting capability. Additionally, the main drawback of switched-capacitor multilevel inverters is the capacitor inrush current. This problem is also averted in the proposed topology by using a charging inductor or quasi-resonant capacitor charging with a front-end boost converter. Simulation results and lab-scale experimental verifications are provided to validate the feasibility and viability of the proposed inverter topology.


Author(s):  
Lipika Nanda ◽  
A Dasgupta ◽  
U.K. Rout

<p>As multilevel inverters are gaining increasing importance .New topologies are being proposed in order to achieve large number of levels in output voltage. A simplified MLI topology has been presented with both symmetrical and asymmetrical configurations. This paper represents a comprehensive analysis of above mentioned topology with FFT analysis,switching and conduction losses of the inverter.Hence efficiency at different carrier frequencies has been calculated successfully.Results are verified with simulation studies.Multilevel inverters are currently considered as a better industrial solution for high dynamic performance and power-quality demanding applications, covering a wide power range.</p>


Author(s):  
Tamiru Debela ◽  
Jiwanjot Singh

Abstract Multilevel inverters (MLIs) have formed a new wave of interest in research and industry. Switched capacitor-based multilevel inverters are used to avoid the need for multiple separated DC sources compared to cascaded MLIs. However, the inclusion of several capacitors creates problems such as high inrush current, voltage imbalance. To avoid these drawbacks, this paper proposes an isolation-based scheme by using a flyback converter in the switched capacitor multilevel inverter. Further, the overall topology provides step-up AC voltage across the load from a single DC source with fewer power switches. To generate a step-up five-level voltage across the load, switched capacitor-based multilevel inverter needs six power switches and only one capacitor. To get the appropriate switching operation to generate the NL-levels, phase disposition pulse width modulation (PD-PWM) has been developed. The extended nine-level S 2 -MLI is also discussed in this paper under different conditions as change in input source voltage and dynamic load change. Moreover, to prove the superior performance of switched-capacitor single DC source multilevel inverter (S2-MLI), comparative analysis with existing single DC source MLI has been performed. The effectiveness and feasibility of the proposed topology are tested with varieties of loads by simulation using Matlab/Simulink. To validate the simulation results, hardware implementation has been done of five-level S2-MLI considering resistive and motor load by using DSpace 1103 controller.


Author(s):  
Norjulia Mohamad Nordin ◽  
Naziha Ahmad Azli ◽  
Nik Rumzi Nik Idris ◽  
Nur Huda Ramlan ◽  
Tole Sutikno

Direct Torque Control using multilevel inverter (DTC-MLI) with hysteresis controller suffers from high torque and flux ripple and variable switching frequency. In this paper, a constant frequency torque controller is proposed to enhance the DTC-MLI performance. The operational concepts of the constant switching frequency torque controller of a DTC-MLI system followed by the simulation results and analysis are presented. The proposed system significantly improves the DTC drive in terms of dynamic performance, smaller torque and flux ripple, and retain a constant switching frequency.


2020 ◽  
Vol 67 (12) ◽  
pp. 3192-3196 ◽  
Author(s):  
Kaibalya Prasad Panda ◽  
Prabhat Ranjan Bana ◽  
Gayadhar Panda

2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2321
Author(s):  
Mohammad Tayyab ◽  
Adil Sarwar ◽  
Irfan Khan ◽  
Mohd Tariq ◽  
Md Reyaz Hussan ◽  
...  

A new triple voltage boosting switched-capacitor multilevel inverter (SCMLI) is presented in this paper. It can produce 13-level output voltage waveform by utilizing 12 switches, three diodes, three capacitors, and one DC source. The capacitor voltages are self-balanced as all the three capacitors present in the circuit are connected across the DC source to charge it to the desired voltage level for several instants in one fundamental cycle. A detailed comparative analysis is carried to show the advantages of the proposed topology in terms of the number of switches, number of capacitors, number of sources, total standing voltage (TSV), and boosting of the converter with the recently published 13-level topologies. The nearest level control (NLC)-based algorithm is used for generating switching signals for the IGBTs present in the circuit. The TSV of the proposed converter is 22. Experimental results are obtained for different loading conditions by using a laboratory hardware prototype to validate the simulation results. The efficiency of the proposed inverter is 97.2% for a 200 watt load.


2013 ◽  
Vol 313-314 ◽  
pp. 876-881
Author(s):  
M.R. Rashmi ◽  
B. Anu

Nonconventional energy sources are playing important role in meeting current power/energy demands. However these sources cannot provide High voltage/power. For power conditioning and voltage amplification solid state power converters are very much essential. One such approach to obtain high voltage was to use cascaded multilevel inverter but cascaded multilevel inverters require separate DC sources and they cannot be used for regenerative applications. To overcome these limitations, a novel configuration is using diode clamped multilevel inverter is proposed here. . The conditioned DC voltage from photovoltaic cells or fuel cells or batteries is boosted and inverted by means of multistage Multilevel Inverters (MLI). Three different configurations are presented in this paper. From the simulation results of all three configurations, the topology which is found to be better is implemented in the real time. A proto type is developed to boost 40 V input DC to 100 V AC and the experimental results for the same are presented.


Author(s):  
Kennedy Aganah ◽  
Cristopher Luciano ◽  
Mandoye Ndoye ◽  
Gregory Murphy

The past two decades has seen a growing demand for high-power, high-voltage utility scale inverters mostly fueled by the integration of large solar PV and wind farms. Multilevel inverters have emerged as the industry choice for these megawatt range inverters because their reduced voltage stress, capable of generating an almost sinusoidal voltage, in-built redundancy, among others. This paper present a new Switched-Source Multilevel Inverter (SS MLI) architecture. The new inverter show superior over existing topologies. It has reduced voltage stress on the semiconductor, uses less number of switches &ndash;reduced size/weight/cost and increased efficiency. The new SSMLI is comprised of two voltage sources (V1, V2) and 6 switches. It is capable of generating 5-level output voltage in symmetric modes (i.e., V1 = V2), and 7-level output voltage in asymmetric modes (i.e., V1 &ne; V2). To demonstrate the validity of the proposed inverter, simulations results using MATLAB&reg; /Simulink&reg; for 5- and 7-level output voltages are presented . The simulations are also verified experimentally using a laboratory prototype.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1915
Author(s):  
Hossein Khoun Jahan ◽  
Reyhaneh Eskandari ◽  
Tohid Rahimi ◽  
Rasoul Shalchi Alishah ◽  
Lei Ding ◽  
...  

In this paper, a switched-capacitor multilevel inverter with voltage boosting and common-mode-voltage reduction capabilities is put forth. The proposed inverter is synthesized with one-half bridge and several switched-capacitor cells. Due to the voltage boosting and common-mode current reduction features, the proposed multilevel inverter is suitable for grid-connected PV applications. In addition, an analytical lifetime evaluation based on mission profile of the proposed inverter has been presented to derive lifetime distribution of semiconductors. Whereas in the proposed inverter, any components failure can bring the whole system to a shutdown. The series reliability model is used to estimate the lifetime of the overall system. The performance of the suggested multilevel inverter in grid-connected applications is verified through the simulation results using the grid-tied model in Matlab/Simulink. Moreover, the viability and feasibility of the presented inverter are proven by using a one kW lab-scaled prototype.


Sign in / Sign up

Export Citation Format

Share Document