scholarly journals The influence of exogenous gibberellic acid (GA3) and 24-epibrassinolide (24-EpiBL) on seed germination and the expression of genes involved in GA and BR synthesis/signalling in pepper (Capsicum annuum L.)

2021 ◽  
Vol 20 (5) ◽  
pp. 15-23
Author(s):  
Selin Çayan ◽  
Gölge Sarıkamış ◽  
Canan Yüksel Özmen ◽  
Umut Kibar ◽  
Eren Özden ◽  
...  

Gibberellins (GAs) and brassinosteroids (BRs) are the plant hormones involved in various physiological processes including seed germination. In this study, the effects of exogenous gibberellic acid (GA3) and 24-epibrassinolide (24-EpiBL) treatments on the expression of key genes involved in GA and BR syntheis/signalling during seed germination were investigated in pepper (Capsicum annuum L). The expressions of BES1 and BRI1 involved in BR synthesis/signalling pathway as well as GA3OX1 and GA20OX1 associated with gibberellic acid biosynthesis in plants were determined. Exogenous GA3 treatments increased BES1 expression and the highest increase was determined with 10⁻⁸ M BR + 100 µM GA3 (P<0.05).  On the contrary, the expression of BRI1 gene was significantly decreased by 10-8 M BR + 100 µM GA3 (P<0.05). The expression of GA3OX1 gene was induced with BR and GA3 treatments (P<0.05). GA20OX1 gene expression was generally higher compared to the expression of GA3OX1 and significantly increased by the GA3 treatments. Our findings are expected to bring an insight to the influence of BRs during seed germination together with the expression of associated genes.

2017 ◽  
Vol 225 ◽  
pp. 581-588 ◽  
Author(s):  
Jitendriya Panigrahi ◽  
Bhumi Gheewala ◽  
Mansi Patel ◽  
Niyati Patel ◽  
Saikat Gantait

2010 ◽  
Vol 42A (2) ◽  
pp. 141-152 ◽  
Author(s):  
Siddharth Sukumaran ◽  
Bai Xue ◽  
William J. Jusko ◽  
Debra C. DuBois ◽  
Richard R. Almon

Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.


2017 ◽  
Vol 9 (3) ◽  
pp. 1505-1509 ◽  
Author(s):  
Cherry Nalwa ◽  
Ashok K. Thakur ◽  
Amit Vikram ◽  
R. Rane ◽  
A. Vaid

The present investigation was carried out at Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan during the year 2014 -2015 to study the “Effect of cold plasma treatment and priming on bell pepper (Capsicum annuum L. cultivar California Wonder) for seed germination and seedling vigour. The seeds were ex-posed to various durations of oxygen plasma treatment using glow discharge technique at FCIPT, Institute for Plas-ma Research, Gandhinagar, Gujarat, India. Seeds were pre-treated with power of 100 W for treatment durations of 0, 3, 6, 9, 12, 15 minutes for 0, 4, 8 and 12 month durations. The changes in surface morphology of plasma treated seeds were studied by Scanning Electron Microscopy (SEM) and Contact Angle Goniometer. Along with plasma treatment, seeds were also treated with standard priming method i.e osmoprimng for comparison. Results showed that plasma treatment alone as well as in combination with osmoprimng up to 6 minutes duration had positive effects on seed germination and seedling vigour. Germination and vigour indices significantly increased by 21.75% and 90.71% respectively. Characteristics of germination percentage, speed of germination, seedling vigour index-I & II, significantly increased by 13.92%, 1.39 cm, 0.38 mg, 322.07 respectively, compared with control. And it was found that immediately after plasma exposure the germination (84.41%) and vigour (228.50) was highest and it was reduced to (73.54%) and (174.27) after 12 months of storage. These results indicated that cold plasma treatment might promote the growth and modify the speed of germination i.e. higher speed of germination was observed in seeds exposed to plasma treat-ment for 6 minutes (59.82%), whereas, lowest germination speed (40.76%) was observed in untreated control.


Agrociencia ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 227-242
Author(s):  
Alejandro Bolaños Dircio ◽  
Jeiry Toribio Jiménez ◽  
Miguel Á. Rodríguez Barrera ◽  
Giovanni Hernández Flores ◽  
Erubiel Toledo Hernández ◽  
...  

Plant growth promoting bacteria are known to directly or indirectly influence the development and yield of plants. Studies that show the biotechnological potential of these bacteria as biofertilizers are thus important. The objective of this study was to evaluate the growth capacities of strains M2-7 and LYA12 and define whether their interactions with Capsicum annuum L. increases production. The hypothesis was that the Bacillus licheniformis strains have capacities to promote growth and yield of Capsicum annuum L. First, these strains were evaluated in vitro in selective culture media to detect those direct or indirect mechanisms for plant growth promotion. Then, the effect of both strains on seed germination and the effect of strain M2-7 were studied on the in vivo development of C. annuum L. The experimental design was completely randomized with 3 treatments and 3 repetitions. Data was analyzed with ANOVA and Tukey test (p≤0.05). Results showed that the bacterial strains were able to fix nitrogen, solubilize tricalcium phosphate Ca3 (PO4)2, produce gibberellins, lytic enzymes (amylases, proteases, lipases and esterases), biosurfactants, volatile compounds; and significantly inhibit growth (p≤0.05) of the phytopathogenic fungus Colletotrichum sp. Likewise, the strains M2-7 and LYA12 increased (p≤0.05) by 89 and 78% the seed germination of C. annuum L. M2-7 enhanced fresh weight (235%), stem diameter (308%), root weight, number and weight of fruits (316%), as compared to treatment 1 (Nitrofoska) and 3 (Control). Therefore, B. licheniformis M2-7 strain is attractive to develop the formulation of biofertilizers; aiming to improve yield of some horticultural crops towards a sustainable and ecological agriculture.


2009 ◽  
Vol 2 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Ballachanda N. Devaiah ◽  
Ramaiah Madhuvanthi ◽  
Athikkattuvalasu S. Karthikeyan ◽  
Kashchandra G. Raghothama

2017 ◽  
Vol 42 (2) ◽  
pp. 245-250 ◽  
Author(s):  
A Y Zunun-Pérez ◽  
T Guevara-Figueroa ◽  
S N Jimenez-Garcia ◽  
A A Feregrino-Pérez ◽  
F Gautier ◽  
...  

1963 ◽  
Vol 50 (18) ◽  
pp. 599-600 ◽  
Author(s):  
Hans Kende ◽  
Helga Ninnemann ◽  
Anton Lang

Sign in / Sign up

Export Citation Format

Share Document