Influences of Environmental Differentiation and Conceptual Tempo on Young Children's Spatial Coordination

1979 ◽  
Vol 48 (3_suppl) ◽  
pp. 1091-1097 ◽  
Author(s):  
Theodore M. Shlechter ◽  
Neil J. Salkind

This study examined the effects of stimulus differentiation on kindergartners' ability to coordinate spatial perspectives when classified by conceptual tempo. 33 children were asked to identify from an array of pictures the one which best represented a doll's view of the stimulus display. Two stimulus displays were constructed which differed in the degree of differentiation among their items. In one set, low differentiation, three three-dimensional cardboard forms were in the shape of houses, each house having minimal external cues. In the second set, high differentiation, were three three-dimensional house scenes with each house having numerous external cues. The subjects took longer to make an initial response, made more correct, and somewhat fewer egocentric responses under the high differentiation condition than under the low differentiation condition. There also was an interaction between conceptual tempo and environmental differentiation; the impulsive children's egocentric performances were more influenced by the stimulus conditions than were the reflective children's. These findings suggested that organismic and environmental conditions are both important factors in children's spatial cognition.

Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2018 ◽  
Vol 13 (2) ◽  
pp. 187-211
Author(s):  
Patricia E. Chu

The Paris avant-garde milieu from which both Cirque Calder/Calder's Circus and Painlevé’s early films emerged was a cultural intersection of art and the twentieth-century life sciences. In turning to the style of current scientific journals, the Paris surrealists can be understood as engaging the (life) sciences not simply as a provider of normative categories of materiality to be dismissed, but as a companion in apprehending the “reality” of a world beneath the surface just as real as the one visible to the naked eye. I will focus in this essay on two modernist practices in new media in the context of the history of the life sciences: Jean Painlevé’s (1902–1989) science films and Alexander Calder's (1898–1976) work in three-dimensional moving art and performance—the Circus. In analyzing Painlevé’s work, I discuss it as exemplary of a moment when life sciences and avant-garde technical methods and philosophies created each other rather than being classified as separate categories of epistemological work. In moving from Painlevé’s films to Alexander Calder's Circus, Painlevé’s cinematography remains at the forefront; I use his film of one of Calder's performances of the Circus, a collaboration the men had taken two decades to complete. Painlevé’s depiction allows us to see the elements of Calder's work that mark it as akin to Painlevé’s own interest in a modern experimental organicism as central to the so-called machine-age. Calder's work can be understood as similarly developing an avant-garde practice along the line between the bestiary of the natural historian and the bestiary of the modern life scientist.


Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Kyo-in Koo ◽  
Andreas Lenshof ◽  
Le Thi Huong ◽  
Thomas Laurell

In the field of engineered organ and drug development, three-dimensional network-structured tissue has been a long-sought goal. This paper presents a direct hydrogel extrusion process exposed to an ultrasound standing wave that aligns fibroblast cells to form a network structure. The frequency-shifted (2 MHz to 4 MHz) ultrasound actuation of a 400-micrometer square-shaped glass capillary that was continuously perfused by fibroblast cells suspended in sodium alginate generated a hydrogel string, with the fibroblasts aligned in single or quadruple streams. In the transition from the one-cell stream to the four-cell streams, the aligned fibroblast cells were continuously interconnected in the form of a branch and a junction. The ultrasound-exposed fibroblast cells displayed over 95% viability up to day 10 in culture medium without any significant difference from the unexposed fibroblast cells. This acoustofluidic method will be further applied to create a vascularized network by replacing fibroblast cells with human umbilical vein endothelial cells.


2021 ◽  
Vol 7 (1) ◽  
pp. 519-539
Author(s):  
Thiago Minete Cardozo ◽  
Costas Papadopoulos

Abstract Museums have been increasingly investing in their digital presence. This became more pressing during the COVID-19 pandemic since heritage institutions had, on the one hand, to temporarily close their doors to visitors while, on the other, find ways to communicate their collections to the public. Virtual tours, revamped websites, and 3D models of cultural artefacts were only a few of the means that museums devised to create alternative ways of digital engagement and counteract the physical and social distancing measures. Although 3D models and collections provide novel ways to interact, visualise, and comprehend the materiality and sensoriality of physical objects, their mediation in digital forms misses essential elements that contribute to (virtual) visitor/user experience. This article explores three-dimensional digitisations of museum artefacts, particularly problematising their aura and authenticity in comparison to their physical counterparts. Building on several studies that have problematised these two concepts, this article establishes an exploratory framework aimed at evaluating the experience of aura and authenticity in 3D digitisations. This exploration allowed us to conclude that even though some aspects of aura and authenticity are intrinsically related to the physicality and materiality of the original, 3D models can still manifest aura and authenticity, as long as a series of parameters, including multimodal contextualisation, interactivity, and affective experiences are facilitated.


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Estaner Claro Romão

The Galerkin Finite Element Method (GFEM) with 8- and 27-node hexahedrons elements is used for solving diffusion and transient three-dimensional reaction-diffusion with singularities. Besides analyzing the results from the primary variable (temperature), the finite element approximations were used to find the derivative of the temperature in all three directions. This technique does not provide an order of accuracy compatible with the one found in the temperature solution; thereto, a calculation from the third order finite differences is proposed here, which provide the best results, as demonstrated by the first two applications proposed in this paper. Lastly, the presentation and the discussion of a real application with two cases of boundary conditions with singularities are proposed.


2009 ◽  
Vol 36 (2) ◽  
pp. 355-375 ◽  
Author(s):  
Richard Laing ◽  
Anne-Marie Davies ◽  
David Miller ◽  
Anna Conniff ◽  
Stephen Scott ◽  
...  

Urban greenspace has consistently been argued to be of great importance to the wellbeing, health, and daily lives of residents and users. This paper reports results from a study that combined the visualisation of public results from a study that combined the visualisation of public greenspace with environmental economics, and that aimed to develop a method by which realistic computer models of sites could be used within preference studies. As part of a methodology that employed contingent rating to establish the values placed on specific greenspace sites, three-dimensional computer models were used to produce visualisations of particular environmental conditions. Of particular importance to the study was the influence of variables including lighting, season, time of day, and weather on the perception of respondents. This study followed previous work that established a suitable approach to the modelling and testing of entirely moveable physical variables within the built environment. As such, the study has established firmly that computer-generated visualisations are appropriate for use within environmental economic surveys, and that there is potential for a holistic range of attributes to be included in such studies.


2005 ◽  
Vol 128 (2) ◽  
pp. 312-318 ◽  
Author(s):  
Mihai B. Dobrica ◽  
Michel Fillon

Pocket-pads or steps are often used in journal bearing design, allowing improvement of the latter’s dynamic behavior. Similar “discontinuous” geometries are used in designing thrust bearing pads. A literature review shows that, to date, only isoviscous and adiabatic studies of such geometries have been performed. The present paper addresses this gap, proposing a complete thermohydrodynamic (THD) steady model, adapted to three-dimensional (3D) discontinuous geometries. The model is applied to the well-known geometry of a slider pocket bearing, operating with an incompressible viscous lubricant. A model based on the generalized Reynolds equation, with concentrated inertia effects, is used to determine the 2D pressure distribution. On this basis, a 3D field of velocities is constructed which, in turn, allows the resolution of the 3D energy equation. Using a variable-size grid improves the accuracy in the discontinuity region, allowing an evaluation of the magnitude of error induced by Reynolds assumptions. The equations are solved using the finite volume method. This ensures good convergence even when a significant reverse flow is present. Heat evacuation through the pad is taken into account by solving the Laplace equation with convective boundary conditions that are realistic. The runner’s temperature, assumed constant, is determined by imposing a zero value for the global heat flux balance. The constructed model gives the pressure distribution and velocity fields in the fluid, as well as the temperature distribution across the fluid and solid pad. Results show important transversal temperature gradients in the fluid, especially in the areas of minimal film thickness. This further justifies the use of a complete THD model such as the one employed.


Sign in / Sign up

Export Citation Format

Share Document