scholarly journals Identification of Transformation Plasticity Coefficient by Four-Point Bending Tests and Some Data under Pearlite Transformation

2003 ◽  
Vol 52 (10) ◽  
pp. 1198-1203 ◽  
Author(s):  
Takayuki OTSUKA ◽  
Tatsuo INOUE
Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The flexural Young’s modulus of western hemlock, medium-density fiberboard, and 5-plywood (made of lauan) has been determined by conducting three- and four-point bending tests with various span lengths and by flexural vibration test. The Young’s modulus was significantly influenced by the deflection measurement method. In particular, the Young’s modulus was not reliable based on the difference between the deflections at two specific points in the specimen, although this test is standardized according to ISO 3349-1975 and JIS Z2101-2009.


2006 ◽  
Vol 309-311 ◽  
pp. 1191-1194
Author(s):  
Shuichi Wakayama ◽  
Teppei Kawakami ◽  
Junji Ikeda

Microfracture process during bending tests of alumina ceramics used for artificial joints was evaluated by acoustic emission (AE) technique. Four-point bending tests were carried out in air, refined water, physiological saline and simulated body fluid. AE behavior during bending test inhibited the rapid increasing point of AE events and energy prior to the final unstable fracture. It was understood that the bending stress at the increasing point corresponds to the critical stress for maincrack formation. The critical stress was affected by water in environments more strongly than fracture strength. Consequently, it was suggested that the characterization of maincrack formation is essential for the long-term reliability assessment of load-bearing bioceramics.


2005 ◽  
Vol 290 ◽  
pp. 336-339 ◽  
Author(s):  
G. Guidoni ◽  
Y. Torres Hernández ◽  
Marc Anglada

Four point bending tests have been carried out on a thermal barrier coating (TBC) system, at room temperature. The TBC system consisted of a plasma sprayed Y-TZP top coat with 8 % in weight of Yttria, a bond coat of NiCrAlY and a Ni-based superalloy Inconel 625 as substrate. The TBC coating was deposited on both sides of the prismatic specimens. Efforts have been done in detecting the damage of the coating by means of Maltzbender et al [1] model.


1998 ◽  
Vol 201 (22) ◽  
pp. 3057-3065 ◽  
Author(s):  
WR Corning ◽  
AA Biewener

To evaluate the safety factor for flight feather shafts, in vivo strains were recorded during free flight from the dorsal surface of a variety of flight feathers of captive pigeons (Columba livia) using metal foil strain gauges. Strains recorded while the birds flew at a slow speed (approximately 5-6 m s-1) were used to calculate functional stresses on the basis of published values for the elastic modulus of feather keratin. These stresses were then compared with measurements of the failure stress obtained from four-point bending tests of whole sections of the rachis at a similar location. Recorded strains followed an oscillatory pattern, changing from tensile strain during the upstroke to compressive strain during the downstroke. Peak compressive strains were 2.2+/-0. 9 times (mean +/- s.d.) greater than peak tensile strains. Tensile strain peaks were generally not as large in more proximal flight feathers. Maximal compressive strains averaged -0.0033+/-0.0012 and occurred late in the downstroke. Bending tests demonstrated that feather shafts are most likely to fail through local buckling of their compact keratin cortex. A comparison of the mean (8.3 MPa) and maximum (15.7 MPa) peak stresses calculated from the in vivo strain recordings with the mean failure stress measured in four-point bending (137 MPa) yields a safety factor of between 9 and 17. Under more strenuous flight conditions, feather stresses are estimated to be 1.4-fold higher, reducing their safety factor to the range 6-12. These values seem high, considering that the safety factor of the humerus of pigeons has been estimated to be between 1.9 and 3.5. Several hypotheses explaining this difference in safety factor are considered, but the most reasonable explanation appears to be that flexural stiffness is more critical than strength to feather shaft performance.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4137-4148 ◽  
Author(s):  
TA Sebaey ◽  
Ahmed Wagih

Hybrid composite laminates are currently receiving researchers’ attention due to their specific advantages in designing laminates with improved specific strength and stiffness. One of the main disadvantages of polymeric laminated composites is their high sensitivity to notches, which cannot be avoided in design. This paper presents a comparison between two common hybridization techniques, namely sandwich and intra-ply hybridization. The study adopts experimental observations to investigate the influence of hybridization method on the flexural properties of notched carbon–aramid hybrid laminates. After four-point bending tests, the results show that the damage nature in both laminates is different. A catastrophic damage is observed for intra-ply hybrid laminates, while sandwich laminates show progressive damage. In terms of the strength, sandwich specimens show 1.3 times higher specific strength, compared to intra-ply specimens. Moreover, the bottom layers of the laminate manufactured in the sandwich fashion show minimal damage due to the high capability of the aramid/epoxy core to absorb the energy in deformation and concentrate the damage at the top layers (the compression side).


2019 ◽  
Vol 211 ◽  
pp. 371-381 ◽  
Author(s):  
Yangyang Yin ◽  
Yanmin Qiao ◽  
Shaowei Hu

2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


Sign in / Sign up

Export Citation Format

Share Document