scholarly journals Differential expression pattern of genes involved in oxygen metabolism in epithelial oviductal cells during primary in vitro culture

2019 ◽  
Vol 7 (2) ◽  
pp. 66-76
Author(s):  
Katarzyna Stefańska ◽  
Sandra Knap ◽  
Magdalena Kulus ◽  
Ievgenia Kocherova ◽  
Piotr Celichowski ◽  
...  

AbstractOxygen metabolism is crucial in establishing successful pregnancy, since excessive amount of reactive oxygen species (ROS) may exert deleterious effects on the developing embryo. There are several defense mechanisms against oxidative stress in the female reproductive tract, including production of antioxidant enzymes by oviductal epithelial cells (OECs). Undoubtedly, OECs play major part in female fertility and may also serve as an in vitro model of the oviduct. Therefore, the aim of this study was to investigate the expression of genes involved in oxygen metabolism. We have isolated OECs from oviducts of crossbred gilts (n=45) and maintained their in vitro culture for 30 days, collecting their RNA at days 1, 7, 15 and 30. The gene expression was determined with the use of Affymetrix® Porcine Gene 1.1 ST Array Strip. Our results revealed 166 differentially expressed genes belonging to four ontology groups: „cellular response to oxidative stress”, “cellular response to oxygen-containing compound”, “cellular response to oxygen levels” and “cellular response to reactive oxygen species”, most of which are also involved in other major processes in the organism. However, our findings provide a valuable insight into porcine reproductive biology and may be utilized in optimization of assisted reproduction techniques.Running title: Genes involved in oxygen metabolism in oviductal epithelial cells

2020 ◽  
Vol 8 (3) ◽  
pp. 112-117
Author(s):  
Ievgeniia Kocherova ◽  
Rut Bryl ◽  
Igor Crha ◽  
Pavel Ventruba ◽  
Jana Zakova ◽  
...  

AbstractIn the female reproductive tract, reactive oxygen species (ROS) may exert physiological and pathophysio-logical effects. Although ROS play an essential role as the signaling molecules, their excessive accumulation contributes to the pathogenesis of many reproductive processes. In the ovarian follicle, ROS affect multiple physiological processes, including oocyte maturation and fertilization. However, a lack of studies showing to which extend ovarian granulosa and cumulus cells can contribute to the development of oxidative stress within the ovarian follicle. In the presented research, the extracellular ROS accumulation level was investigated using GCs and CCs primary in vitro cultures. The obtained results demonstrated a steady decrease in extracellular ROS level during GCs primary culture. By contrast, ROS concentration in CCs conditioned medium increased gradually between the first and the seventh days of culture. The observed changes may reflect the proliferation status and metabolic activity of GCs and CCs during in vitro culture. Additionally, the elevated ROS level at respective points of time could occur as a consequence of culture in atmospheric oxygen. The distinct function and localization within the ovarian follicle may explain the differences between GCs and CCs oxygen metabolism.Running title: Reactive oxygen species in primary culture of human follicular cells


2021 ◽  
Vol 20 (2) ◽  
pp. 45-52
Author(s):  
Sofoklis Stavros ◽  
Antonios Koutras ◽  
Thomas Ntounis ◽  
Konstantinos Koukoubanis ◽  
Theodoros Papalios ◽  
...  

Oxidative stress may play a role in implantation failure on multiple levels. Oxidative stress is found widely in several biological systems, as well as it acts on various molecular levels with different mechanisms. It has been shown that it is rather the disequilibrium between reactive oxygen species causing oxidative stress and antioxidant mechanisms counteracting their effects, than reactive oxygen species levels themselves. Reactive oxygen species play a role in implantation and fertilisation by acting on different levels of embryo-formation and endometrial changes. Additionally, it is widely abundant in the female reproductive tract including ovaries, oocytes, tubal as well as follicular fluid. Moreover, it has been shown that male fertility is affected by reactive oxygen species by determining sperm quality. Last but not least, oxidative stress may affect IVF indirectly through its actions on peritoneal fluid. As long as research studies on elucidating the development of oxidative stress markers on patients undergoing IVF continue, ever more new possibilities emerge on predicting the pregnancy outcome.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
N. Pfeifer ◽  
D. M. Baston-Büst ◽  
J. Hirchenhain ◽  
U. Friebe-Hoffmann ◽  
D. T. Rein ◽  
...  

Background. The aim of this paper was to determine the influence of differentin vitroculture media on mRNA expression of Hedgehog genes,il-6,and important genes regarding reactive oxygen species in single mouse embryos.Methods. Reverse transcription of single embryos either culturedin vitrofrom day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium) orin vivountil day 3.5post coitum. PCR was carried out forβ-actinfollowed by nested-PCR forshh, ihh, il-6, nox, gpx4, gpx1,andprdx2.Results. The number of murine blastocysts cultured in COOK medium which expressedil-6, gpx4, gpx1,andprdx2mRNA differed significantly compared to thein vivogroup. Except fornox, the mRNA profile of the Vitrolife media group embryos varied significantly from thein vivoones regarding the number of blastocysts expressing the mRNA ofshh, ihh, il-6, gpx4, gpx1andprdx2.Conclusions. The present study shows that differentin vitroculture media lead to different mRNA expression profiles during early development. Even the newly developedin vitroculture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.


2018 ◽  
Vol 19 (9) ◽  
pp. 2814 ◽  
Author(s):  
Svantje Tauber ◽  
Swantje Christoffel ◽  
Cora Thiel ◽  
Oliver Ullrich

Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.


2010 ◽  
Vol 22 (1) ◽  
pp. 325
Author(s):  
M. E. Dell'Aquila ◽  
B. Ambruosi ◽  
R. Guastamacchia ◽  
F. Binetti ◽  
E. Ciani ◽  
...  

Juvenile in vitro embryo transfer (JIVET) reduces the generation interval and increases the rate of genetic gain. The developmental competence of in vitro-produced embryos is strictly related to oocyte quality. Oxidative stress in the oocyte is an emerging problem in reproductive in vitro technologies, due to the gas atmosphere used to incubate oocytes and the lack of physiological defense mechanisms available in the female reproductive tract. The major source of reactive oxygen species (ROS) is represented by mitochondria where ROS are produced during oxidative phosphorylation. The aim of the present study was to analyze mitochondria and ROS in ovine prepubertal oocytes before and after IVM in order to clarify their suitability in JIVET programs. Cumulus-oocyte complexes from the ovaries of 38 slaughtered prepubertal (less than 8 months of age) lambs of the Comisana breed were analyzed at retrieval (group A) or after IVM (group B; Ambruosi et al. 2009 Theriogenology 71, 1093-1104). After cumulus cell removal, all oocytes underwent nuclear chromatin, mitochondria and ROS evaluation by confocal analysis of fluorescence distribution and intensity. Hoechst 33258 and Mitotracker Orange CMTM Ros (Molecular Probes Inc., Eugene, OR) were used to label nuclear chromatin and mitochondria (Ambruosi et al. 2009) and 2′,7′-dichloro-dihydro-fluorescein diacetate was used for ROS labelling (Hashimoto et al. 2000 Mol. Reprod. Dev. 57, 353-360). Out of 65 oocytes from group A, 38 oocytes with regular size (>130 μm in diameter), morphology and nuclear chromatin at the GV stage were selected for analysis. One-hundred-thirty-eight oocytes underwent IVM (group B). Nuclear maturation rate (metaphase II with 1st polar body extruded) was 54%, 75/138. All MII oocytes were used for analysis. Significantly higher rate of oocytes from group B showed heterogeneous (large aggregates, clusters, pericortical, perinuclear) mitochondrial (mt) distribution pattern than oocytes from group A (55%, 41/75 v. 29%, 11/38, respectively; P < 0.05) which showed uniform distribution of small mt aggregates. Fluorescent intensity of mt labeling did not differ between groups (43.05 ± 16.15 v. 45.89 ± 10.36, for group A and B respectively; NS). In most of the oocytes from both groups, intracellular ROS were distributed in small or large aggregates (35/38, 92% and 62/75, 83%). No statistical difference was observed for intracellular ROS levels between oocytes from group A (66.36 ± 13.2) and group B (72.84 ± 20.63; NS). The culture conditions used in this study provided normal mt distribution and intracellular ROS levels. Qualitative and quantitative evaluation of mitochondria and intracellular ROS could be useful to improve in vitro culture methods in ovine prepubertal oocytes.


2012 ◽  
Vol 23 (18) ◽  
pp. 3582-3590 ◽  
Author(s):  
Alawiah Alhebshi ◽  
Theodora C. Sideri ◽  
Sara L. Holland ◽  
Simon V. Avery

Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary “Achilles’ heel” of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster–defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily55FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress–related disease.


2021 ◽  
Author(s):  
Lamia M. El-Samad ◽  
Mohamed S. El-Gerbed ◽  
Hanaa S. Hussein ◽  
Justin Flaven-Pouchon ◽  
Abeer El Wakil ◽  
...  

Abstract Neonicotinoids are modern insecticides widely used in agriculture worldwide. Their impact on target (nervous system) and non-target (midgut) tissues has been well studied in beneficial insects including honeybees. However, their effects on pest insects on the field are comparably rarely described. Here, we have studied the effects of the neonicotinoid imidacloprid on the midgut of the pest insect Locusta migratoria caught in the field. We found that in the midgut of imidacloprid-exposed locusts the activity of enzymes involved in reactive oxygen metabolism was perturbed. By contrast, the activity of P450 enzymes that have been shown to be activated in a detoxification response and that were also reported to produce reactive oxygen species was elevated. Probably as a consequence, markers of oxidative stress including protein carbonylation and lipid peroxidation accumulated in midgut samples of these locusts. Histological analyses revealed that their midgut epithelium is disorganized and that the brush border of the epithelial cells is markedly reduced. Indeed, microvilli are significantly shorter, misshapen and possibly non-functional in imidacloprid-treated locusts. We hypothesize that imidacloprid induces oxidative stress in the locust midgut, thereby changing the shape of midgut epithelial cells and probably in turn compromising their physiological function. Presumably, these effects reduce the survival rate of imidacloprid-treated locusts and the damage they cause in the field.


2020 ◽  
Vol 71 (5) ◽  
pp. 450-461
Author(s):  
Maria Iuliana Gruia ◽  
Serban Marinescu ◽  
Dragos Predescu ◽  
George Jinescu ◽  
Bogdan Socea ◽  
...  

Colorectal cancer (CRC) is one of the most common human malignancies, affecting one of 20 persons in areas with high socio-economic standard. In Romania, the frequency of colorectal cancer is growing rapidly placing the country among countries with an average incidence of the disease. There are some etiologic factors involved and treatment of disease is carried out after proper staging. Biochemical mechanisms underlying malignant transformation in colorectal cancer are not all fully understood, therefore our work trying to enter in the path of oxygen metabolism at patients surgically treated. The aim of the study is to follow the production of active metabolites of oxygen, in the dynamics of the surgical procedure, and how the endogenous natural protection systems are activated, following the invasive procedure. Oxidative stress biochemistry assays, realized before and after surgical excision showed a direct relationship between the production of reactive oxygen species and the presence of tumor, without being able to distinguish exactly if malignant tissue is able to induce oxidative stress, or the latter occurs due to neoplastic changes. Based on the results we can say with certainty that the reactive oxygen species ROS primary attack occurs in the lipids, and then the proteins, following activation of endogenous antioxidant defence.


Author(s):  
Mariachiara Buccarelli ◽  
Quintino Giorgio D’Alessandris ◽  
Paola Matarrese ◽  
Cristiana Mollinari ◽  
Michele Signore ◽  
...  

Abstract Background Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). Methods In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. Results Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. Conclusions Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.


Sign in / Sign up

Export Citation Format

Share Document