scholarly journals Effects of Probiotics on Human Health and Disease: A Review

2021 ◽  
Vol 48 (1) ◽  
pp. 95-100
Author(s):  
A. Amiri ◽  
F. Firoozeh ◽  
M. Zibaei ◽  
A. Khaledi

Abstract Alteration of the gut microbiome in order to achieve a balance in the normal flora of the intestine could be very beneficial in maintaining the health of the human. Probiotics are living microbial supplements that are added to the diet and have beneficial effects on the host by improving the balance of the intestinal microflora. The purpose of this study is to review previous studies on the effects of probiotics on human health and various diseases. The Farsi and English electronic databases such as, SID, Iranmedex, Magiran, Google Scholar, PubMed and ISI Web of Knowledge were searched and the published articles that have studied the effects of probiotics on the prevention and treatment of various diseases were included in the study. The review of published articles related to the subject showed that consumption of probiotics, prebiotics and proper diet have the significant effects on the health of the digestive system and has reduced and improved symptoms of different disorders and diseases. Further research is needed to better understand the underlying mechanisms of probiotic function and confirm the role of the probiotics in preventing and treating various types of cancers and other diseases.

2020 ◽  
Vol 16 (8) ◽  
pp. 1196-1208
Author(s):  
Ramin Ghodsi ◽  
Rahmat Nosrati

Background: Oils and fats are the densest sources of food energy among food groups. Vegetable oils are constituted predominantly of triglycerides. Due to the importance of edible oils in nutrition, food industry and human health, great attention has been paid to them in recent years. Some minor bioactive constituents in oils include phospholipids, tocols, sterols, carotenoid, chlorophyll, phenols, phylokynon and terpenes. Objective: The aim of the present study was to examine beneficial effects of minor compounds in edible oils on human health. Results: Minor compounds of edible oils that we use daily can produce remarkable results in the prevention and treatment of various diseases like diabetes, inflammation, hypertension, cancer, allergy and central nervous system disorders due to their antimicrobial, anti-cancer, anti-viral, anti-oxidative, anti-inflammation, anti-mutagenic, hypolipidemic, and hypoglycemic properties, among others. Conclusion: The results of this study showed that the presence of beneficial minor compounds in oils could have significant impact on the prevention and treatment of various diseases. Therefore, the type of consumed oil can play an important role in human health.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


2001 ◽  
Vol 82 (2) ◽  
pp. 149-151
Author(s):  
V. A. Anokhin ◽  
U. A. Tyurin

Normal intestinal microflora includes tens and hundreds of species, and their total number in an adult reaches 1014 microorganisms per 1 g of feces [7]. The basis of normal human microflora are obligate-anaerobic bifidobacteria, lactobacilli and bacteroids, the number of which is several orders of magnitude higher than the content of aerobic intestinal bacteria. In recent years, representatives of other anaerobic groups - Anaerovibrio, Butyrivibrio - have been found in the normal intestinal microflora, the biological and clinical significance of which is under study [7].


2010 ◽  
Vol 56 (8) ◽  
pp. 611-650 ◽  
Author(s):  
Sophie Coudeyras ◽  
Christiane Forestier

All accessible mucous membranes of the human body are colonized by an abundant and diversified microbial flora called microbiota. Recent studies have shown that these microorganisms, long regarded as purely commensal, have essential beneficial effects on human health. Thus, numerous human ailments are linked to dysbiosis; that is, imbalances in the microflora composition. The administration of probiotic microorganisms could, in some situations, provide substantial relief from such disorders. These live microorganisms, which, according to the definition, confer a health benefit to the host when administered in adequate amounts, are often derived from human flora and belong mostly to lactic acid bacteria, in particular to the genus Lactobacillus . The constant improvement of knowledge of the role of human microbiota and the growing popularity of probiotics are now opening the door to new prophylactic and therapeutic strategies in human health.


2019 ◽  
Vol 81 (1) ◽  
pp. 453-482 ◽  
Author(s):  
Diane M. Ward ◽  
Suzanne M. Cloonan

Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Mingfang Ye ◽  
Linlin Zhang ◽  
Yuanming Yan ◽  
Huizhong Lin

Abstract Doxorubicin (DOX) is a wide-spectrum antitumor agent, but its clinical application is largely limited by its cardiotoxicity. Therefore, identification of effective agents against DOX-induced cardiotoxicity is of critical importance. The present study aimed to determine the beneficial role of punicalagin (PUN), a polyphenol isolated from pomegranate, in DOX-induced cardiotoxicity in vitro and explored the underlying mechanisms. H9c2 cardiomyocytes were pretreated with different concentrations (50, 100 and 200 μM) of PUN prior to DOX exposure. The results showed that PUN pretreatment significantly increased cell viability, inhibited lactate dehydrogenase (LDH) release and suppressed cell apoptosis induced by DOX. Additionally, PUN pretreatment attenuated the loss of mitochondrial membrane potential and cytochrome c release. Besides, PUN further enhanced the expression of nuclear Nrf2 and HO-1 in DOX-treated H9c2 cells, and the aforementioned beneficial effects of PUN were partially abolished by small interfering RNA (siRNA)-mediated Nrf2 knockdown. Hence, our findings clearly revealed that PUN might be a promising agent for alleviating the cardiotoxicity of DOX, and Nrf2/HO-1 signaling might serve a critical role during this process.


Sign in / Sign up

Export Citation Format

Share Document