scholarly journals Performance of Absolute Real-Time Multi-GNSS Kinematic Positioning

2018 ◽  
Vol 53 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Kamil Kazmierski

Abstract Recently, we observe the rapid development of the Global Navigational Satellite Systems (GNSS), including autonomous positioning techniques, such as Precise Point Positioning (PPP). The GNSS have different conceptions, different spacecraft and use different types of orbits which is why the quality of real-time orbit and clock products is inconsistent, thus, the appropriate approach of the multi-GNSS observation processing is needed to optimize the solution quality. In this paper, the kinematic field experiment is conducted in order to examine multi-GNSS real-time Standard Point Positioning (SPP) and PPP performance. The test was performed on the 26 km-long car route through villages, forests, the city of Wrocław, crossing under viaducts and a high tension line. For the first time, the solution is based on GPS + GLONASS + Galileo + BeiDou observations using streamed corrections for orbits and clocks with two different weighting scenarios. Thanks to the usage of the multi-GNSS constellation the number of positioning epochs possible to determine increases by 10%. The results show also that the appropriate weighting approach can improve the root mean square error in the SPP solution by about 13% and 42% for the horizontal and vertical coordinate components, respectively. In the case of PPP, the maximum quality improvement equals 70% for the horizontal component and the results for the vertical component are comparable with those obtained for the GPS-only solution.

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3276
Author(s):  
Dehai Li ◽  
Wei Yan ◽  
Jinzhong Mi ◽  
Yamin Dang ◽  
Yunbin Yuan ◽  
...  

At present, Global Position System (GPS) navigation ephemeris mainly broadcasts satellite orbits with meter-level precision for standard point positioning and precise relative positioning. With the rapid development of real-time precise point positioning (PPP), the receiver or smartphone has begun to demand more and more convenient, continuous, and reliable access to real-time services of precise orbits. Therefore, this study proposes a solution of utilizing the 18-parameter ephemeris to directly broadcast ultra-rapid precise predicted orbits with centimeter-level precision for real-time PPP. For the first time in GPS, the difference in the PPP results between the precise orbits and the calculated orbits broadcasted from the generated ephemeris parameters is supplied as follows: (1) During the validity period of 2 h, root mean square (RMS) of the relative distance offsets between the results of PPP with the precise orbits and the results of PPP the 18-parameter ephemeris is only 0.0098 m. (2) Within 15 min after the validity period of 2 h, RMS of the relative distance offsets between the results of PPP with the precise orbits and the results of PPP with the predicted orbits by 18-parameter ephemeris is only 0.0057 m. Consequently, the 18-parameter ephemeris is feasible and advisable to broadcast precise predicted orbits for real-time PPP applications. Compared with the classic precise orbits broadcast mode with the orbit corrections defined by the radio technical commission for maritime services standards 10403.2 (RTCM), the mode of broadcasting the precise orbits with the 18-parameter ephemeris achieved the following improvements in convenience, continuity, and reliability: (1) The calculation of satellite position is the same as that of the navigation ephemeris excluding the additional correction operations required to the RTCM; (2) the amount of broadcast parameters was reduced by 20 times; (3) the length of the validity period was expanded 120 times, where the longer valid period helped to overcome the orbit corrections loss caused by RTCM stream failures; and (4) within 15 min after the validity period, the predicted orbits with an accuracy of 2 cm could still be provided by the 18-parameter ephemeris, which can ensure the real-time services of precise orbits in the case of a 15 min communication interruption of the RTCM orbit correction data stream.


2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Ken Harima ◽  
Suelynn Choy ◽  
Chris Rizos ◽  
Satoshi Kogure

AbstractThis paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D’études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6027
Author(s):  
Lin Pan ◽  
Xuanping Li ◽  
Wenkun Yu ◽  
Wujiao Dai ◽  
Cuilin Kuang ◽  
...  

For time-critical precise applications, one popular technology is the real-time precise point positioning (PPP). In recent years, there has been a rapid development in the BeiDou Navigation Satellite System (BDS), and the constellation of global BDS (BDS-3) has been fully deployed. In addition to the regional BDS (BDS-2) constellation, the real-time stream CLK93 has started to support the BDS-3 constellation, indicating that the real-time PPP processing involving BDS-3 observations is feasible. In this study, the global positioning performance of real-time PPP with BDS-3/BDS-2 observations is initially evaluated using the datasets from 147 stations. In the east, north and upward directions, positioning accuracy of 1.8, 1.2 and 2.5 cm in the static mode, and of 6.7, 5.1 and 10.4 cm in the kinematic mode can be achieved for the BDS-3/BDS-2 real-time PPP, respectively, while the corresponding convergence time with a threshold of 10 cm is 32.9, 23.7 and 32.8 min, and 66.9, 42.9 and 69.1 min in the two modes in the three directions, respectively. To complete this, the availability of BDS-3/BDS-2 constellations, the quality of BDS-3/BDS-2 real-time precise satellite products, and the BDS-3/BDS-2 post-processed PPP solutions are also analyzed. For comparison, the results for the GPS are also presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chao Hu ◽  
Qianxin Wang ◽  
Alberto Hernandez Moraleda

Global navigation satellite systems are essential for positioning, navigation, and timing services. The quality and reliability of satellite observations determine the system performance, especially in the case of the newly launched global BDS-3 service. However, analyses of multipath delays in BDS-3 satellite observations suggest that there are appreciable errors at different frequencies. Improvement of the accuracy and precision of positioning, navigation, and timing services provided by BDS-3 requires the mitigation of multipath delays of the satellite observations. This paper models the multipath delays of BDS-3 observations using a least-squares combined autoregressive method. Furthermore, a sparse modeling algorithm is proposed to obtain a multipath delay series using total variation and elastic net terms for denoising and eliminating the effect of limited original observations. The estimated coefficients of multipath delays are then set as prior information to correct the next-arc code observations, where the square-root information filter is used in the coefficient estimation. Moreover, four groups of experiments are conducted to analyze the results of modeling the BDS-3 multipath delay using the proposed methods, with single-frequency precise point positioning (PPP) and real-time PPP solutions being selected to test the correction of multipath delays in BDS-3 code observations. The residuals of iGMAS and MGEX station coordinates indicate improvements in eastward, northward, and upward directions of at least 4.1%, 9.6%, and 1.2%, respectively, for the frequency B1I; 6.6%, 5.3%, and 0.2%, respectively, for B3I, 12.5%, 14.3%, and 3.8%, respectively, for B1C; and 5.9%, 7.4%, and 18.1%, respectively, for B2a relative to the use of the traditional method in BDS-3 single-frequency PPP. Furthermore, the real-time double-frequency PPP is optimized by at least 10% for B 1 I + B 3 I and B 1 C + B 2 a . An improved result was obtained with the proposed strategy in a standard point positioning experiment. The proposed multipath delay mitigation method is therefore effective in improving BDS-3 satellite code observations.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1596
Author(s):  
Pengli Shen ◽  
Fang Cheng ◽  
Xiaochun Lu ◽  
Xia Xiao ◽  
Yulong Ge

A quality evaluation of precise products for BDS-3 constellations is presented for the first time in this contribution. Then, the tropospheric delay retrieval and positioning performance of BDS-3 precise point positioning (PPP) solutions using the precise products (gbm, wum, iac, sha, cnt) with observations from 24 stations from DOY 280 to 317 in 2020 was comprehensively investigated. The orbit comparisons present consistencies of 0.09–0.22 m for the C19–C37 satellites and of 0.5–1.2 m for the C38–C46 satellites among the final products. The standard deviation (STD) values of the clock differences of iac showed the best agreement with those of gbm, followed by wum, sha. The clock differences performance of cnt was the worst. For BDS-3 PPP solutions with five Analysis centers (ACs) products, the median convergence times of static PPP mode incorporating the gbm, wum, iac, sha, and cnt products were 31.0, 33.5, 34.5, 37.8, and 72.0 min, respectively; the median convergence times of kinematic PPP model incorporating the same products were 40.5, 41.0, 50.5, 55.0, and 94.0 min, respectively. The positioning accuracies in the static and kinematic modes were approximately 1–4 cm, 2–6 cm in the horizontal and vertical components, respectively. With the final products in kinematic mode, the performance of PPP with real-time products (cnt) is poorer than all PPP with final products. The median of ZTD accuracies of the five products gbm, wum, iac, sha, and cnt were 7.84, 7.58, 7.04, 7.19, and 10.1 mm, respectively, and the accuracy differences were very small among five AC products (gbm, wum, iac, sha).


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 334
Author(s):  
Yuanfan Zhang ◽  
Zhixi Nie ◽  
Zhenjie Wang ◽  
Huisheng Wu ◽  
Xiaofei Xu

With the rapid development of the global navigation satellite system (GNSS), high-rate GNSS has been widely used for high-precision GNSS coseismic displacement retrieval. In recent decades, relative positioning (RP) and precise point positioning (PPP) are mainly adopted to retrieve coseismic displacements. However, RP can only obtain relative coseismic displacements with respect to a reference station, which might be subject to quaking during a large seismic event. While PPP needs a long (re)convergence period of tens of minutes. There is no convergence time needed in the variometric approach for displacements analysis standalone engine (VADASE) but the derived displacements are accompanied by a drift. Temporal point positioning (TPP) method adopts temporal-differenced ionosphere-free phase measurements between a reference epoch and the current epoch, and there is almost no drift in the displacement derived from TPP method. Nevertheless, the precise orbit and clock products should be applied in the TPP method. The studies in recent years are almost based on the postprocessing precise orbits and clocks or simulated real-time products. Since 2013, international GNSS service (IGS) has been providing an open-access real-time service (RTS), which consists of orbit, clock and other corrections. In this contribution, we evaluated the performance of real-time coseismic displacement retrieval based on TPP method with IGS RTS correction products. At first, the real-time precise orbit and clock offsets are derived from the RTS correction products. Then, the temporal-differenced ionosphere-free (IF) combinations are formed and adopted as the TPP measurements. By applying real-time precise orbit and clock offsets, the coseismic displacement can be real-timely retrieved based on TPP measurements. To evaluate the accuracy, two experiments including a stationary experiment and an application to an earthquake event were carried out. The former gives an accuracy of 1.8 cm in the horizontal direction and 4.1 cm in the vertical direction during the whole period of 15-min. The latter gives an accuracy of 1.2 cm and 2.4 cm in the horizontal and vertical components, respectively.


2015 ◽  
Vol 68 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Suelynn Choy ◽  
Ken Harima ◽  
Yong Li ◽  
Mazher Choudhury ◽  
Chris Rizos ◽  
...  

The Japanese Quasi-Zenith Satellite System (QZSS) is a regional satellite navigation system capable of transmitting navigation signals that are compatible and interoperable with other Global Navigation Satellite Systems (GNSS). In addition to navigation signals, QZSS also transmits augmentation signals, e.g. the L-band Experimental (LEX) signal. The LEX signal is unique for QZSS in delivering correction messages such as orbits and clock information that enable real-time Precise Point Positioning (PPP). This study aims to evaluate the availability of the LEX signal as well as the quality of the broadcast correction messages for real-time PPP applications. The system is tested in both static and kinematic positioning modes. The results show that the availability of the LEX signal is 60% when the QZSS satellite elevation is at 30° and above 90% when the satellite is above 40° elevation. Centimetre-level position accuracy can be obtained for static PPP processing after two hours of convergence using the current MADOCA-LEX (Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis) correction messages transmitted on the LEX signal; and decimetre-level point positioning accuracy can be obtained for kinematic PPP processing.


2021 ◽  
Vol 13 (19) ◽  
pp. 3905
Author(s):  
Xuanping Li ◽  
Lin Pan

The space segment of all the five satellite systems capable of providing precise position services, namely BeiDou Navigation Satellite System (BDS) (including BDS-3 and BDS-2), Global Positioning System (GPS), GLObal NAvigation Satellite System (GLONASS), Galileo and Quasi-Zenith Satellite System (QZSS), has almost been fully deployed at present, and the number of available satellites is approximately 136. Currently, the precise satellite orbit and clock products from the analysis centers European Space Agency (ESA), GeoForschungsZentrum Potsdam (GFZ) and Wuhan University (WHU) can support all five satellite systems. Thus, it is necessary to investigate the positioning performance of a five-system integrated precise point positioning (PPP) (i.e., GRECJ-PPP) using the precise products from different analysis centers under the current constellation status. It should be noted that this study only focuses on the long-term performance of PPP based on daily observations. The static GRECJ-PPP can provide a convergence time of 5.9–6.9/2.6–3.1/6.3–7.1 min and a positioning accuracy of 0.2–0.3/0.2–0.3/1.0–1.1 cm in east/north/up directions, respectively, while the corresponding kinematic statistics are 6.8–8.6/3.3–4.0/7.8–8.1 min and 1.0–1.1/0.8/2.5–2.6 cm in three directions, respectively. For completeness, although the real-time precise products from the analysis center Centre National d’Etudes Spatiales (CNES) do not incorporate QZSS satellites, the performance of real-time PPP with the other four satellite systems (i.e., GREC-PPP) is also analyzed. The real-time GREC-PPP can achieve a static convergence time of 8.7/5.2/11.2 min, a static positioning accuracy of 0.6/0.8/1.3 cm, a kinematic convergence time of 11.5/6.9/13.0 min, and a kinematic positioning accuracy of 1.7/1.6/3.6 cm in the three directions, respectively. For comparison, the results of single-system and dual-system PPP are also provided. In addition, the consistency of the precise products from different analysis centers is characterized.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


Sign in / Sign up

Export Citation Format

Share Document