scholarly journals Innovative Husk-Crete Building Materials from Rice Chaff and Modified Cement Mortars

2020 ◽  
Vol 23 (2) ◽  
pp. 67-72
Author(s):  
Banjo Akinyemi ◽  
Temidayo E. Omoniyi ◽  
Olugbenga Elemile ◽  
Oluwafemi Arowofila

AbstractThe study considers the use of rice chaffs (husks) as an aggregate in a composite cement matrix system. Cement mortars were modified using styrene butadiene rubber polymer for strengthening. The goal is to develop a lightweight building material with good thermal insulation properties out of agricultural waste. The compressive strength, split tensile strength and flexural strength were experimentally evaluated. Further analyses of the samples were carried out by means of scanning electron microscope and energy dispersive spectroscopy. The key results obtained were presented and analysed with the performance of the proposed husk-crete building material showing adequate properties essential for a lightweight structural material with possible applications for non-structural purposes.

2020 ◽  
Vol 28 (8-9) ◽  
pp. 663-677
Author(s):  
ESA Khalaf ◽  
H Farag ◽  
EM Abdel-Bary

This work aims to avoid pollution of the environment resulting from ashes accumulated due to the burning of agricultural wastes. Also, it aims to reduce the cost without impairing the mechanical properties of rubber vulcanizates. For this reason, this work was carried out as a possible solution by incorporation of cellulose fibers derived from bagasse waste as reinforcing fillers in rubber composites. Besides, it aims at reporting an investigation on a series of mixtures based on natural ground bagasse powder (GBP) and carbon black (CB) as reinforcing fillers to study their effects on the mechanical and physical properties of styrene butadiene rubber (SBR) composites. The GBP obtained from the grinding machine has a selective grain size distribution ranging from about 20 µm to 180 µm. In addition, 2.5 phr of added maleic anhydride was used to improve the interfacial adhesion between SBR and agricultural waste fillers (i.e. bagasse). Tensile strength, elongation at break, modulus at 100% elongation, resilience and hardness (Shore A), degree of swelling, and thermal properties of the rubber vulcanizates were studied. The prepared samples were also analyzed by X-ray diffractometer and scanning electron microscopy. The advantage of choosing the 25 phr bagasse concentration as a pivoting factor makes the road clearer to investigate that the optimum concentration of bagasse to be used simultaneously with CB in SBR composites is 30 phr. Furthermore, it was found from the obtained results that the addition of GBP up to 50 phr is possible without impairing the mechanical properties of SBR vulcanizates.


2021 ◽  
Vol 36 (5) ◽  
pp. 586-595
Author(s):  
E. S. A. Khalaf

Abstract In the present study, a series of mixes based on different concentrations of carbon black (CB) as a reinforcing filler and sugarcane bagasse as supplementary filler, were investigated to examine their effects on the mechanical properties of styrene butadiene rubber (SBR) composites. To this end, the first group of mixes deals with the effect of different concentrations of CB ranging from 0 to 80 phr at fixed bagasse concentration of 25 phr. The second group of mixes involves the addition of bagasse with concentrations varying from 10 to 50 phr at 10 intervals with fixed CB concentration of 40 phr. The sizes of the employed ground bagasse powder (GBP) in all prepared formulations ranged from 20 to 180 μm. In addition, 2.5 phr of maleic anhydride (MA) was added to enhance the interfacial adhesion between SBR and agricultural waste fillers (i. e. bagasse). Tensile strength, elongation at break, modulus at 100% elongation, resilience, hardness (Shore A), abrasion and degree of swelling of the rubber vulcanizates were studied. The prepared samples were also analyzed by scanning electron microscopy (SEM) to show the distribution of fiber and the occurrence of fiber-matrix adhesion. The optimum concentration of bagasse to be used simultaneously with CB in SBR composites was found to be 30 phr. Overall, it was found from the obtained results that the addition of GBP up to 50 phr is feasible without impairing the mechanical properties of SBR vulcanizates.


2013 ◽  
Vol 687 ◽  
pp. 213-218
Author(s):  
Ru Wang ◽  
Dao Xun Ma ◽  
Pei Ming Wang

This paper tested the capillary water absorption, impermeability and cracking of cement mortars modified with three polymers respectively and founded the correlation of cracking with the waterproof performance. The results show that with the polymer content increasing, especially as the polymer/cement ratio (mp/mc) increases from 0% to 5%, the reduction in the capillary water absorption and the penetration depth of water into mortar is significant. When the mp/mc is more than 15%, the increase of the mp/mc in all mortars has little effect on the capillary water absorption and the penetration depth. For the purpose of reducing the cracking weighted value, the styrene-butadiene rubber (SBR) dispersion and the styrene-acrylic copolymer (SAE) powder are superior to the SAE dispersion. Regardless what kinds of polymers, the capillary water absorption and the penetration depth of water into mortar show exponential growth with the increasing cracking weighted value.


2013 ◽  
Vol 59 (3) ◽  
pp. 321-335 ◽  
Author(s):  
S. Thirumurugan ◽  
A. Sivakumar

Abstract Synthetic polymer latexes, such as styrene-butadiene rubber (SBR) latex addition in Portland cement has gained wider acceptance in many applications in the construction industry. Polymer-modified cementitious systems seals the pores and micro cracks developed during hardening of the cement matrix, by dispersing a film of polymer phase throughout the concrete. A comprehensive set of experimental test were conducted for studying the compressive properties of SBR latex polymer with crimped polypropylene fibres at relative volume fractions of 0.1 and 0.3%. The results indicated that the addition of polypropylene fibre has little effect on the reduction in the workability of concrete composite containing fly ash and SBR Latex. Increase in polypropylene fibres upto 0.3% Vf showed increase in compressive strength upto 57.5MPa. The SBR concrete without fibre showed an increase in strength upto 20 % compared to plain concrete. Test results also indicated that the compressive strength was increased in SBR fibre concrete by means of an ordinary dry curing process than wet curing because of their excellent water retention due to polymer film formation around the cement grains. On the contrary the compressive strength reduces for SBR fibre concretes under wet curing compared to dry curing


2018 ◽  
Vol 33 (5) ◽  
pp. 659-672
Author(s):  
Weili Wu ◽  
Songyan Cong

Diatomite is a kind of biomass sedimentary rock, which is widely used in chemical engineering, petroleum, building materials, biomedical medicine, health care and environmental protection, and other fields due to its characteristics of lightweight, large specific surface area, super adsorption, noise and abrasion resistance, thermal properties, and corrosion resistance. The diatomite is similar to silica in the composition structure and can be used as a substitute for silica to reinforce the rubber materials. In this work, the diatomite was modified with different modifiers to fill the rubbers such as natural rubber, styrene–butadiene rubber, butadiene rubber, nitrile butadiene rubber, ethylene propylene diene monomer (EPDM), chloroprene rubber, methyl vinyl silicone rubber, fluorine rubber (FKM), and acrylic rubber (ACM). The results showed that the obtained formula is the most suitable diatomite modifier for various rubber is Si69, and its amount is 2.5 parts per hundred rubber (phr), and the diatomite content is 20 phr. The diatomite is more suitable for FKM, ACM, and EPDM. The diatomite has better reinforced effect on FKM, EPDM, and ACM than silica, and FKM is the most prominent. The modified diatomite can be uniformly dispersed in the matrix of FKM, EPDM, and ACM; the compatibility is good; and the mechanical properties are excellent. It was demonstrated that the modified diatomite with green environmental protection and low cost can replace silica to reinforce and fill the three kinds of rubbers.


2020 ◽  
Vol 10 (3) ◽  
pp. 1061
Author(s):  
Kim

This is an experimental study showing the effect of four types of polymers (acrylate polymer (AC), polyvinyl alcohol (PVA), styrene–butadiene rubber (SBR), and ethylene-vinyl acetate (EVA)) on the mechanical properties of polymer-modified cement mortars (PCMs). One polymer dosage was used in this study (3%), and the effect of this dosage on PCMs was compared with a control mortar mix with 0% polymer. The compressive, flexural, and pull-off bond strengths were measured and compared with previous results in works of literature. The effect of polymer addition on improving the mechanical properties of PCMs was clarified, and this effect was more obvious on the flexural strength than that on the compressive strength. The PCMs containing EVA showed the best performance, with up to 33% and 63% increases in compressive and flexural strengths after 28 days, respectively. In comparison, AC, PVA, and SBR produced smaller (16%–46% compared to control) improvements in the flexural strength after 28 days. In general, PCMs containing EVA showed the best mechanical properties.


2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

Sign in / Sign up

Export Citation Format

Share Document