scholarly journals Chemical speciation and mobility of heavy metals in soils of refuse dumpsites in some urban towns in the Niger Delta of Nigeria

2020 ◽  
Vol 31 (2) ◽  
pp. 66-72
Author(s):  
Godswill O. Tesi ◽  
Joshua O. Ojegu ◽  
Samuel O. Akporido

AbstractRefuse dumpsites often contain materials which are capable of polluting surrounding soils especially if the dumpsites are not adequately shielded from the surrounding area. This study examined chemical speciation and mobility of heavy metals in three urban towns in the Niger Delta. Soil samples were collected from three dumpsites in each of the three selected urban towns at 0-15 cm, 15-30 cm and 30-45 cm depths. The chemical speciation of the heavy metals in the soils was determined using the Tessier’s sequential extraction procedure. The results showed that on the average, the residual fraction was the predominant fraction of all the metals except Pb which was dominant in the organic fraction. The mobility factor followed the order Zn > Fe > Pb > Cr > Ni > Cd > Cu. The study indicates that the metals studied do not pose environmental risk considering their relatively low concentrations and the chemical forms they are associated with. It is however recommended that the sites be continuously monitored because of the deleterious health effects of exposure to heavy metal pollution in the events of reclaim.

2014 ◽  
Vol 894 ◽  
pp. 266-270
Author(s):  
Quan Bi Huang ◽  
Hui Li Liu ◽  
Yi Nian Zhu ◽  
He Hua Zheng

Two carbonate tailing samples were collected from Dachang mine tailing reservoirs, Guangxi Province, China. The chemical speciation of Zn, As, Cd and Sb contained in tailing samples were determined by Dold seven-stage sequential extraction procedure, as well as mineralogical and chemical analysis. Then the potential migration abilities of these heavy metals were evaluated. The tailing analysis results showed that the main minerals were calcite, quartz, sphalerite and pyrite, the major elements were Si, S, Ca, Fe and Al, and the trace heavy metals included Zn, As, Cd and Sb. Zn mainly existed in secondary sulfide, primary sulfides and residual fraction, and As was in primary sulfide and residue, but Sb and Cd was residual fraction. The mobility of heavy metals followed the order: Zn > Sb > Cd > As.


2001 ◽  
Vol 81 (4) ◽  
pp. 405-414 ◽  
Author(s):  
M T Morera ◽  
J C Echeverría ◽  
J J Garrido

Sewage sludges added to arable land can improve soil fertility and physical properties. However, the concentrations of heavy metals commonly found in sludges limits their application to soil. The purpose of this paper is to evaluate the mobility of heavy metals (Cd, Cu, Ni, Pb and Zn) in four soils amended with different rates (0, 80, 60 and 320 t ha–1) of anaerobically stabilized urban sewage sludge. Total metal content in the sewage sludge was Zn >> Cu > Pb > Ni >> Cd. Sludge, soils and sludge-soil mixtures were fractionated by the Tessier sequential extraction procedure. The fractions extracted by H2O2/HNO3 and NH2OH.HCl were the most abundant pools for metals under study. The apparent mobility of metals in the sludge was Zn ≈ Cd ≈ Ni > Pb > Cu. The addition of sewage sludge in soils increased the percentages of metal extracted in non-residual fractions. ANOVA showed that the most significant increases were those of Zn, followed by Cu and Pb; there were no statistical differences (P < 0.05) for Ni and Cd. Exchangeable Zn from sludge was immobilized in basic soils. The other trace metals showed no fraction redistribution. The soils and sludge-treated soil samples were also extracted with EDTA and DTPA. Extraction with EDTA was more sensitive to soil type, whereas extraction with DTPA showed wider variation with metals. Both chelates seemed to be more effective to assess the mobility of metals added with the sludges at low concentrations than the Tessier’s chemical partitioning. Key words: Soils, sewage sludge, heavy metals, mobility


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
M. A. Balogun ◽  
S. H. O. Egboh ◽  
M. O. Money-Irubor

Some heavy metals, consisting of Fe, Cd, Co, Cu, Mn, Ni, Pb and Zn were determined using USEPA Method 3050B for total metal concentration. Six composite samples were located from Aladja (ALJ), Ovwian (OVW), Ejevwu (EJW), Ekete Inland (EKI}, Orhuwhorun (ORH), and Otor-Udu (OTU) towns. In addition, chemical speciation was carried out on these samples using method employed by Tessier et al. as modified by Kersten and Forstner to assess their speciation pattern and the fraction of abundance as determinant of environmental pollution. From the results obtained, concentrations of Fe, Cd and Mn were more predominant in the residual fraction (F5) in the form of Fe3+, Cd2+ Mn2+ respectively for both wet and dry seasons. Co was more in the exchangeable fraction (F1) as Co2+ for both seasons. Concentration of Cu in the form of Cu2+ is higher in Fe-Mn oxide fraction (F3) for wet season and dry season’s organic fraction (F4). Pb and Zn were abundant in Fe-Mn oxide fraction (F3) for both seasons as divalent ions. Mobility factor calculated for the metals shows pattern in the order: Pb > Co > Zn > Mn > Fe > Cd > Cu > Ni for wet season and Co > Zn > Mn > Cu > Pb > Ni > Cd > Fe for dry season; which is as a result of changes in some physiochemical parameters such as acidity, pH, among others. From this result, there is the need to ensure that future health catastrophe is averted from the accumulation and release of Pb2+, Zn2+, Co2+ and Mn2+ especially into the environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. Ashraf ◽  
M. J. Maah ◽  
I. Yusoff

This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.


2011 ◽  
Vol 51 (No, 7) ◽  
pp. 316-321 ◽  
Author(s):  
A. Vaněk ◽  
L. Borůvka ◽  
O. Drábek ◽  
M. Mihaljevič ◽  
M. Komárek

In order to determine the mobility of Pb, Zn and Cd in soils from the Př&iacute;bram region (Czech Republic) heavily contaminated by metallurgy, two profiles of alluvial soils were closely studied. Total contents of heavy metals were determined after digestion with a mixture of HF and HClO<sub>4</sub>. Heavy metal mobility was assessed using the mobility factor (MF) that represents the proportion of heavy metals present in the exchangeable and carbonate bound fraction based on the Tessier&rsquo;s sequential extraction procedure. The MF ranged from 2 to 46% for lead, 19 to 62% for zinc and 61 to 94% for cadmium. The profile distribution of zinc and cadmium showed a variable development with depth, which is caused by high amounts of these metals present in labile forms. The profile distribution of lead (the least mobile metal) is characterized by a gradual decrease with depth. The results indicate a higher contamination of the soil profile situated 2.5 km away from the smelter in comparison with the profile in its close vicinity. This fact confirms the existence of extreme fluvial contamination.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
A.O. Abdullahi ◽  
A. Usman ◽  
A.H. Zakari ◽  
J.R. Tukur

This research work is aimed at determining the chemical speciation of metals Zn, Mn, Fe and Pb in soil samples from three major dumpsites within Gombe metropolis, Gombe state. The renowned five steps Tessier sequential extraction method was employed in the extraction of the heavy metals. The metals were extracted into five fractions namely: Exchangeable (F1), carbonate bound (F2), Fe-Mn oxide bound (F3), Bound to organic matter (F4) and the residual fraction (F5) in order of decreasing mobility. The elemental analysis of the fractions was carried out using atomic absorption spectrometric technique. The results showed Zn was predominantly bounded to the exchangeable fraction with 32.66±0.31 mg/kg (54.18%) and least in the Fe – Mn oxide fraction with 0.01±0.00 mg/kg (0.02%). The trend in its abundance is in the order F1> F2>F5>F4>F3. Mn was predominantly associated with the bound to carbonates fraction with the value of 103.3.±3.30 mg/kg (56.14%) and least in the exchangeable with the value of 1.30±1.85mg/kg (2.13%) its occurred in the order F2>F3>F4>F5>F1. The concentration of Fe was highest in the residual fraction with the value of 25.90±1.75mg/kg (45.45%)and least in the carbonate bound fraction wi th 5.10±0.40 mg/kg (2.13%) the order is F5>F4>F3>F2>F1. Pb was not detected in most of the fraction but highest in bond to carbonate and bond to organic matter fraction with the values of 6.64±4.12 mg/Kg (70.64 %) and 2.76±0.10 mg/Kg (29.36 %) respectively in two different samples. It was however established that Zn, Mn and Pb were mostly associated with the first three fractions thus, showed high bio-availabilty whereas Fe was found in the residual fraction and is expected to be low in mobility and less bioavailable. 


2006 ◽  
Vol 49 (3) ◽  
pp. 515-526 ◽  
Author(s):  
Ana Tereza Jordão Pigozzo ◽  
Ervim Lenzi ◽  
Jorge de Luca Junior ◽  
Carlos Alberto Scapim ◽  
Antonio Carlos Saraiva da Costa

Agricultural recycling of sewage sludge has been a source of accumulation of heavy metals in the environment which may reach toxic levels and cause serious damage to the biota. Field experiments were undertaken for two agricultural years (2000 and 2002) and effects of two sewage sludge applications were evaluated through the extraction of (essential and non-essential) transition metals by diethylenetriaminepentaacetic acid (DTPA) extractor in a medium texture dystrophic Dark Red Latosol. Cd, Ni, Co, Pb and Cr were not detected. Application of sewage sludge initially caused a slight pH rise in the soil; later pH lowered and kept itself close to the starting level. It could be concluded that through consecutive sludge application, extractable rates of Fe and Mn in soil samples gradually increased during the two agricultural years in proportion to sewage sludge doses and sampling period. In fact, they were higher than rates of control. Due to low concentrations of soil samples, extractor had a restricted capacity for evaluation of its phytoavailability.


2014 ◽  
Vol 40 (2) ◽  
pp. 3-19 ◽  
Author(s):  
Magdalena Jabłońska-Czapla ◽  
Sebastian Szopa ◽  
Czesława Rosik-Dulewska

Abstract The research aim was to determine the long-term impact of the mine waste stored at the coal waste dump Hałda Ruda on the content of heavy metals in the bottom sediments of the Bytomka River. It is a watercourse flowing along this coal waste dump and has been under its influence for over fifty years. The research also attempted to determine the seasonality of changes (2 years) and mobility of selected elements. The article presents total contents of Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the bottom sediments collected from the Bytomka River. It also focuses on the distribution of these elements in particular geochemical fractions determined with the Tessier's sequential chemical extraction procedure. Total element contents were determined with an EDPXRF (Energy Dispersive X-ray Fluorescence) technique. The extractants of particular Tessier's fractions were determined quantitatively with an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) spectrometer. The research results show that the stored waste significantly influences the contents of heavy metals in the Bytomka River bottom sediments. The lowest concentration of heavy metals was observed at the B1 spot (above the dump), while the highest one was measured at the B3 spot (below the dump). Sequential chemical extraction of the bottom sediments indicates that the Zn content in the ion-exchange and carbonate fractions diminished within a year. Nevertheless, Zn bound to Fe and Mn oxides acted in the opposite way. Mn, Zn and Pb are the most dangerous elements from the viewpoint of environmental hazards, as their total concentrations were high. Moreover, their high contents were observed in the most mobile (ion-exchange and carbonate) fractions. Extremely toxic Cd was bound to the oxide fraction to the largest extent. Cu was mainly bound to the organic fraction while environmentally hazardous Cr was bound to the residual fraction.


2021 ◽  
Vol 20 (1) ◽  
pp. 29-40
Author(s):  
T.E. Odunjo ◽  
E.Y. Thomas

The risk associated with the presence of heavy metals in soil is their potential toxicity and ability to enter the ecosystem through the food chain. Total heavy metal content of a soil is inadequate for predicting the toxicity of heavy metals in soil. Therefore, the current study was designed to determine the various forms in which the selected heavy metals: Chromium (Cr), Lead (Pb), Nickel (Ni), and Cadmium (Cd) exist in the soil to ascertain the available forms for plant uptake. Soils samples were randomly collected from selected organic and conventional farms in Akinyele local government, Ibadan, Oyo State, Nigeria, at different depths (0-15, 15-30 and 30-45 cm) using random sampling method. Routine analysis was carried out to determine the textural classes and chemical properties of soil samples. The total heavy metals of the soil samples were determined and their fractions were analysed using sequential extraction method. Cadmium was not detected in most of the soil samples. Residual fraction was predominant in all the analysed heavy metals. In addition, Cr was more associated with the oxidizable fraction having a range of 0.1 mg/kg from Ajibode organic farm (AO) at 30-45 cm depth. Pb and Ni were both more associated with reducible fraction with Pb having a range of 2.7 mg/kg in Ajibode conventional farm (AI) at 0-15 cm depth and 0.1 mg/kg in (AI) at 30-45 cm depth. Reducible values of Ni ranges from 4.3 mg/kg in AI at 0-15 cm to 1.4 mg/kg in AO at 30-45 cm. The apparent mobility and bioavailability for these heavy metals in the studied soils were in the order: Pb>Cr>Ni. The result showed that uptake of heavy metals by the plants would be low as the concentration of the exchangeable form of the heavy metals in the analysed soil sample has the least concentration when compared with the other forms.


2009 ◽  
Vol 62-64 ◽  
pp. 451-455 ◽  
Author(s):  
F.A. Aisien ◽  
J.C. Chiadikobi ◽  
E.T. Aisien

This paper considered the toxicity assessment of some crude oil contaminated soils in Niger Delta areas. The soil samples were collected from different horizontal distances, vertical depths and contaminated soil of different ages. The heavy metals in the contaminated soils were digested and extracted using di-acid digested and DTPA extraction methods respectively. The physiochemical parameters (moisture content, pH, N, P and heavy metals (Ni, Pb and Cd) were analysed with APHA method. The heavy metals concentration was determined using atomic absorption spectrophotometer (AAS). The results show that the metals concentration decreased with the age of the contaminated soil and with increased vertical depths. However, the metals concentrations were almost constant at different horizontal distances. Similar trend was observed for the moisture content, pH, N, P and K.


Sign in / Sign up

Export Citation Format

Share Document