scholarly journals Climate Adaptability of Old and New House in Bushehr's Historical Texture

2020 ◽  
Vol 16 (2) ◽  
pp. 249-258
Author(s):  
Nadiya Mozafari ◽  
Masoud Alimardani

AbstractThe port of Bushehr, with its valuable and unique historical texture, completely matches with its unbearable climate conditions. Over hundreds of years, the port has provided an appropriate ground for human life as no air conditioner is needed there. Unfortunately, this valuable old texture has been destroyed inadvertently. New buildings in the port are just superficial copies of the old buildings’ external surfaces, with no attention to their goal, i.e., the provision of thermal comfort for inhabitants. The new buildings are dramatically increasing without considering the historical texture and climate. As a result, the inhabitants have to use air conditioners in most months continuously; hence, there would be an increase in energy consumption and a disruption in climate balance. This study has been conducted to compare the compatibility of such architecture with the climate and its success in providing climate comfort for the inhabitants. According to the information obtained from the study, the old houses built more than 100 years ago using traditional design had better performance in adaptability with climate. Accordingly, the exploitation of traditional instructions and patterns in a new format would largely reduce energy consumption in hot seasons and eliminate the need for heating in cold seasons. In this regard, a huge amount of energy is saved, resulting in less damage to the environment.

2013 ◽  
Vol 860-863 ◽  
pp. 1607-1611
Author(s):  
Xin Zhao ◽  
Wei Ting Jiang ◽  
Wei Guo Pan ◽  
Jun Li ◽  
Su Liu ◽  
...  

This paper used physical modeling method to simulate the running state of each component of the air conditioner, got the ideal conditions of air conditionor energy consumption model and then calibrated and corrected the model of the air conditioner energy consumption by the experimental data. After utilizing the model for the performance analysis of the actual air conditioner, it was found that the extreme outdoor climate would affect the performance of the air conditioner. In summer, the electricity required to produce the same amount of cooling capacity will be 210% compared with 30°C of outdoor temperature, when the outdoor temperature is 50 °C; In winter, the drop of outdoor temperature will seriously impact on the energy efficiency of air conditioner, when the outdoor temperature is-5°C the electricity required to produce the same amount of cooling capacity will be 150% compared with 10 °C of outdoor temperature. It is of great significance that the results shown in this research contributes to the analysis of air conditioner in extreme conditions, and amended energy consumption of the model can not only forecast the performance of household air conditioners under the extreme climate but also indicate the future direction of air conditionersdesign and improvement.


2019 ◽  
Vol 3 (3) ◽  
pp. 267
Author(s):  
Andi Asrul Sani ◽  
Adelia Enjelina Matondang ◽  
Guruh Kristiadi Kurniawan ◽  
Anggi Mardiyanto

Abstract: The use of glass material should consider the comfort of space in the building. Field of glass is needed as natural lighting and visual facilities between the occupants and the surrounding environment. Its function as natural lighting is often accompanied by an increase in temperature in buildings, considering that Indonesia is a tropical country. Building temperatures that increase due to incoming sunlight can cause discomfort to building occupants. Such conditions make building occupants use air conditioner (AC). The use of air conditioners can increase the value of building energy consumption. For this reason, research on the value of heat transfer in buildings or the value of OTTV (Overall Thermal Transfer Value). OTTV value calculation is done by manual calculation. Bandar Lampung City lecture building at the Sumatra Institute of Technology was chosen as the object of this study. From the results of the study found that the value of heat transfer of a building or OTTV (Overall Thermal Transfer Value) is influenced by the factor of the ratio of the window area to the facade or WWR (Window Wall Ratio) and the shading factor (Shading Coefficient).(Keywords: Keyword: energy consumption, building energy, glass. Abstract: Penggunaan material kaca semestinya mempertimbangkan kenyamanan ruang dalam bangunan. Bidang kaca diperlukan sebagai pencahayaan alami dan sarana visual antara penghuni dan lingkungan sekitar. Fungsinya sebagai pencahayaan alami seringkali disertai dengan peningkatan temperatur pada bangunan, mengingat Indonesia merupakan negara yang beriklim tropis. Temperatur bangunan yang meningkat akibat dari radiasi sinar matahari yang masuk dapat menyebabkan ketidaknyamanan bagi penghuni bangunan. Kondisi seperti itu membuat penghuni bangunan menggunakan air conditioner (AC). Penggunaan air conditioner tersebut dapat meningkatkan nilai konsumsi energi bangunan. Untuk  itu dilakukan penelitian mengenai nilai perpindahan panas dalam bangunan atau nilai OTTV (Overall Thermal Transfer Value). Penghitungan nilai OTTV dilakukan dengan penghitungan manual. Gedung kuliah Kota Bandar Lampung di Institut Teknologi Sumatera di pilih sebagai objek dalam penelitian ini. Dari hasil penelitian ditemukan bahwa nilai perpindahan panas suatu bangunan atau OTTV (Overall Thermal Transfer Value) dipengaruhi oleh faktor nilai perbandingan luas jendela terhadap bidang fasad atau WWR (Window Wall Ratio) dan faktor pembayangan (Shading Coefficient).Kata kunci : konsumsi energi, energi bangunan, kaca.


Author(s):  
Masni A. Majid ◽  
◽  
Aina Syafawati Roslan ◽  
Noor Azlina Abdul Hamid ◽  
Norhafizah Salleh ◽  
...  

Energy was the important sources to human life. Due to increases energy demand in daily life, the energy consumption was increase day by day because of the heat load from solar radiation and heat produced by people. Toward sustainable development, this research was carried out to develop a lightweight concrete (LWC) block with various cooling agent such as glycerine, propylene glycol, coconut shell and gypsum powder. Six lightweight concrete (LWC) block with the size 250mm (L) × 250mm (W) × 100mm (T) were tested for thermal conductivity value. From the experimental result, it shows that lightweight concrete (LCW) block with various cooling agent obtained thermal conductivity value of 0.17W/mK - 0.36W/mK lower than thermal conductivity value for normal lightweight concrete (0.8W/mK) depending on concrete density. The lightweight concrete (LCW) block with cooling agent having low thermal conductivity value will reduce energy consumption in building.


2019 ◽  
Vol 111 ◽  
pp. 06035
Author(s):  
Sihwan Lee

While air conditioner is running, opening doors and windows is a great way to reduce operating efficiency and undermine the air conditioning system’s ability to bring the indoor to a comfortable temperature. The purpose of this study is to evaluate the heat loss and thermal environment through the door open while air conditioner running. To achieve this goal, using full-scale measurement with the commercial store during the cooling period, the infiltration rate, thermal environment and energy consumption of air conditioners with door opened and door closed state were measured. The measured results show that the infiltration rate at the door opened state was increased by about 21.3 times compared to the door closed state. When the set temperature of the air conditioner was 24 °C, the room temperature in the opening gate cooling was measured to be about 5 °C higher than the closing gate cooling. However, the energy consumption was measured approximately 12 kWh/day and there was no difference with door state. This means that the energy consumption is not increased if the indoor air temperature would not reach the set point temperature of air conditioner.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Salah M Alabani ◽  
Ibrahim H Tawil

The residential sector in Libya has grown over the past decade in the construction of residential buildings due to the increase in the population. Moreover, the increase in the level of income has contributed to the increase in the purchase of household appliances, which leads to increased demand for energy. Energy consumption in the household sector accounted for 31% of total energy consumption during 2010, and the share of air conditioners in this sector consumed 18.35%. To reduce energy consumption and improve energy efficiency in this sector, policies should be considered to apply energy efficiency standards and markers to household electrical appliances, as they are considered one of the most successful programs used in the world. Countries are implementing such programs to reduce energy consumption in the domestic sector. This paper presents the possibility of implementing such programs to introduce the importance of energy efficiency standards and labeling programs for home appliances in Libya. The calculations required to design such programs show the energy savings that can be achieved during cooling loads in the summer period of 4 months July, August, September). A strategic plan has been developed during 10-year (2020-2030) to estimate the expected savings of energy consumed and to identify possible obstacles and difficulties by gradually increasing the energy efficiency ratio for comestic air conditioners in two stages, from EER10 to EER11 in the first stage is then raised to EER12 as the second stage.


2021 ◽  
Vol 13 (18) ◽  
pp. 3691
Author(s):  
Fei Yang ◽  
Meng Wang

Heat waves may negatively impact the economy and human life under global warming. The use of air conditioners can reduce the vulnerability of humans to heat wave disasters. However, air conditioner usage has been not clear until now. Traditional registration investigation methods are cumbersome and require expensive labor and time. This study used a Labelme image tagging tool and an available street view images database to firstly establish a monographic dataset to detect external air conditioner unit features and proposed two deep learning algorithms of Mask-RCNN and YOLOv5 to automatically retrieve air conditioners. The training dataset used street view images in the 2nd Ring Road area of downtown Beijing. The model evaluation mAP of Mask-RCNN and YOLOv5 reached 0.99 and 0.9428. In comparison, the performance of YOLOv5 was superior, which is attributed to the YOLOv5 model being better at detecting smaller target entities equipped with a lighter network structure and an enhanced feature extraction network. We demonstrated the feasibility of using street view images to retrieve air conditioners and showed their great potential to detect air conditioners in the future.


Author(s):  
Byung Chang Kwag ◽  
Moncef Krarti

A basic principle of well designed greenhouse design emphasizes the utilization of solar energy as much as possible to grow the plants indoors during extreme outdoor climate conditions. Greenhouses can use significant amount of energy due to several factors including poor envelope design, inappropriate maintenance practices, and heavy reliance on fuel-based heating systems. In order to reduce energy consumption in the agricultural industry of Colorado, it is important to design energy efficient greenhouses under Colorado climatic conditions.


Author(s):  
Ahmed Almogbel ◽  
Fahad Alkasmoul ◽  
Zaid Aldawsari ◽  
Jaber Alsulami ◽  
Ahmed Alsuwailem

AbstractInterest for air-conditioning systems (ACs) has exponentially expanded worldwide throughout the most recent couple of decades. Countries with booming economies including Saudi Arabia report high growth of sales of room air conditioners. With the expanded (GDP) and warming climates, interest for room air-conditioning systems is required to additionally increment. Meeting the expanded need for electricity energy will be a challenge. Expanded utilization of energy-efficient air conditioners impactsly affects lowering the electricity demand. In an ordinary AC, the blower runs at a fixed speed and is either ON or OFF. In an inverter AC, the compressor is consistently on; however, power drawn relies upon the demand for cooling. The speed of the compressor is adjusted appropriately. In this paper, the energy consumption of non-inverter and an inverter AC of the same capacity was assessed in an average office room, under comparative operating conditions, to find the differences in the energy saving, Carbon Dioxide (CO2) emission, and power consumption of air conditioner. Energy consumption was measured for about 108 days, which is from July 16th to October 31st, 24/7, and compared. The experiment is conducted with the same conditions and same capacity air conditioners (18,000 BTU). Results show that the day-by-day normal vitality utilization, the inverter will save up to 44% of electrical consumption compared to a non-inverter of 3471 kWh/year and 6230 kWh/year respectively. Furthermore, the Total Equivalent Warming Impact (TEWI) analysis shows that inverters can save 49% of CO2 emissions.


2021 ◽  
Vol 10 (3) ◽  
pp. 1729-1738
Author(s):  
Rania Atef Mohamed AlQadi ◽  
Alaa Zaghloul ◽  
Shereen Aly Taie

The energy expended to cool the occupied areas by air conditioners represents a substantial share of the total energy exhausted in buildings. Therefore, developing strategies to reduce this energy is crucial. One of the preponderance strategies adopted to depreciate energy consumption in buildings is the occupancy-based strategy. In this research, an innovative model was established to achieve the goal of reducing cooling energy consumed in buildings based on occupancy-based combined with a constant temperature setpoint strategy in two phases, and each phase engrosses in 20 days. Phase one is to identify the extent of cooling energy employed according to the use of room occupants and its costs in consumption was 276.01 kWh after completion of this phase. Sequentially, constructing phase two intended to reduce cooling energy consumption by employing an automatic air-conditioner (AC) control strategy relying on an improved human detection algorithm with a 25℃ as temperature setpoint, resulting in 112.45 kWh of consumption. To complement the motives for elaboration, the human detection measurement using you only look once (YOLO) improved by applying pre-processing algorithms to reach an average human detection enhancement of 21.2%. The proposed model results showed that potential savings associated with the embraced strategy decreases by more than anticipated as the amount of reduced energy reached 59% savings.


2020 ◽  
Author(s):  
◽  
Eréndira Anais Carrillo Salas

In the area of architectural design, the current environmental problem in the world due to global warming because of the high consumption of conventional energy has generated concern for conducting research, where the main objective is to reduce energy consumption. In the Mexican Republic, 88% of electricity consumption is provided to the residential sector and is mainly used in air conditioning systems, since 27% of the country has hot or tropical climate conditions. The bioclimatic architectural design allows, through passive systems, to provide comfort conditions inside the buildings without the use of active systems and, in the case of hot climates, there are different techniques to obtain cooling in living spaces. This research addresses passive cooling techniques to reduce energy consumption in hot-humid climates where the objective was to characterize different indirect evaporative cooling strategies. The work was carried out in the City of Merida on physical scale models where different cooling strategies were implemented in the roof based on the roof-pond system, modifying the materials. In Experiment 1 water was used and in Experiment 2 a phase change material (coconut oil) encapsulated in a 6 mm polycarbonate plate was placed. Measurements were made for 20 days in periods of low and overheating; and in the case of coconut oil, the most unfavorable period was considered, the period of overheating. The results showed that the five cooling systems, both with the use of water and with encapsulated coconut oil, showed a reduction of the TBS inside the investigated spaces. Module 5 however is the experiment that showed the best results reducing its DBT by 3.7 K (water) and 4.9 K (coconut oil).


Sign in / Sign up

Export Citation Format

Share Document