EXPERIMENTAL STUDY ON BUCKLING RESISTANCE TECHNIQUE OF STEEL MEMBERS STRENGTHENED USING FRP

2012 ◽  
Vol 12 (01) ◽  
pp. 153-178 ◽  
Author(s):  
PENG FENG ◽  
SAWULET BEKEY ◽  
YAN-HUA ZHANG ◽  
LIE-PING YE ◽  
YU BAI

Fiber-reinforced polymer (FRP) strengthening technique to improve buckling resistance of steel members is presented in concept and experimental demonstration. The conceptual design of this method is introduced through the preliminary experiments on three specimens. Then, another 14 specimens are tested under axially compressive loading, by which the compressive behavior and the strengthening effects are investigated considering different design parameters and configuration, including the slenderness ratio, the confinement detail, the filled materials and the end connection. The strengthening effects are analyzed by the comparison of both theoretical and test results, which show that the overall buckling failure of steel members can be prevented by FRP strengthening and the ultimate loading capacity and deformation capacity of steel members are enhanced considerably. The maximum load-bearing capacity of strengthened members is 2.86 times of the nonstrengthened ones, and the failure maintains a ductile behavior. In addition, the load-bearing capacity of the members strengthened in this way is compared with the Euler loads of the original steel member and the composite member.

2019 ◽  
Vol 29 (4) ◽  
pp. 141-148 ◽  
Author(s):  
Krzysztof Wierzbicki ◽  
Maciej Szumigała

Abstract The article analyses the method of enhancing a steel beam by adding additional steel members like ribs. They are rigidly connected with both flanges in a plane parallel to the web. That plates reduces warping during in-plane bending of steel beam under lateral-torsional bucking. Different thicknesses of steel plates used as ribs and different cross-sections were taken into account. Calculations were conducted using FEM and ABAQUS CAE environment. The outcomes were compared with ones from previous studies which concerned an influence of endplates on load-bearing capacity of an I-beam.


1976 ◽  
Vol 55 (1) ◽  
pp. 22-29 ◽  
Author(s):  
S.H. Wolfson ◽  
G.W. Svare ◽  
D. Weber

Ten, solid, 99.7% Al 2O3 implants were sur'gically placed bilaterally in the mandibles of Rhesus monkeys and were then placed in function after two to four weeks. After 95 to 179 days, bone blocks were surgically removed. Load-bearing capacity of the six successful implants was determined as the maximum load that did not produce plastic deformation. The average of this value was 57.5 kg. Histological examination showed excellent bone-implant compatibility.


2016 ◽  
Vol 20 (10) ◽  
pp. 1572-1585 ◽  
Author(s):  
Zi-qin Jiang ◽  
Yan-lin Guo ◽  
Ai-Lin Zhang ◽  
Chao Dou ◽  
Cai-Xia Zhang

The double rectangular tube assembled buckling-restrained brace is a new type of buckling energy consumption buckling-restrained brace. Because of its external restraining members, which are bound by high-strength bolts, its mechanical mechanism is more complicated and its failure modes are more varied. In this study, the double rectangular tube assembled buckling-restrained brace composition and three types of end constructions are introduced in detail. The influences of different design parameters on the performance of double rectangular tube assembled buckling-restrained brace are studied by numerical analysis methods; the possible failure modes and the influence of the end strengthening construction of double rectangular tube assembled buckling-restrained brace are also investigated, and a number of suggestions are proposed to improve this design. This study shows that the pinned double rectangular tube assembled buckling-restrained brace has four types of typical failure modes, namely, overall buckling failure, external end local pressure-bearing failure, bending failure of the extended strengthened core region and bolt threading failure. Rational design can prevent a buckling-restrained brace from losing its load-bearing capacity. In addition, compared with the end strengthening scheme with an external hoop, the end strengthening scheme with a strengthened bench can improve the load-bearing capacity of the double rectangular tube assembled buckling-restrained brace more effectively, and a reasonable design can also save materials.


2015 ◽  
Vol 660 ◽  
pp. 208-212 ◽  
Author(s):  
Mihai Fofiu ◽  
Andrei Bindean ◽  
Valeriu Stoian

This paper presents the retrofitting procedure used on a precast reinforced concrete wall panel (PRCWP) in order to restore its initial load bearing capacity. The specimen used in this experimental test is one from the residential multistoried buildings constructed in Romania from the 1970 onwards. All of the characteristics of the element are from the specific era, only scaled down with a factor of 1:1,2. The element was subjected to in-plane reversed cyclic loading to simulate its seismic behavior and obtain its maximum load bearing capacity. After the test we retrofitted the element using Carbon Fiber Strips Externally Bonded (EBR) and anchored with Carbon Fiber Reinforced Polymers (CFRP) mesh. The porpoise of the paper is to compare the maximum loading bearing capacity of the unstrengthen and strengthen elements in order to compare them and examine the efficiency of this retrofitting procedure.


2010 ◽  
Vol 42 ◽  
pp. 255-258
Author(s):  
Hong Chao Fan ◽  
Jing Lin Tong ◽  
Xin Hua Yi ◽  
Jin Bao He ◽  
Jian Xi Yang

The oil film have many excellences such as bigger load bearing capacity, longer life, wider velocity range, lower friction etc. The traditional design method is experience test. Even the design parameters could meet the application requirements, but they can not exert the best performance of the oil film bearing. The relationship between load bearing capacity and materials, lubricants, design parameters and structural characteristics of oil film bearing was analysed. To improve the load capacity and run at the optimal state, the objective function was built to optimize the main parameters. Optimization results showed that the load bearing capacity has been greatly improved.


2021 ◽  
Author(s):  
Guangli Du ◽  
Thomas Cornelius ◽  
Joergen Nielsen ◽  
Lars Zenke Hansen

<p>Structural modelling of a masonry wall is challenging due to material properties, eccentricity of the vertical load, slenderness ratio etc. In recent theoretical developments for design of masonry walls, a new “Phi” method to determine the eccentricity is adopted in Eurocode 6. However, the comparisons between this method and the conventional “Ritter” method shows that for certain prerequisites it would result in substantial different load-bearing capacity. Hence, in order to investigate how support conditions influence the load bearing capacity of the wall, this study performs a nonlinear numerical analysis of a wall for several load cases in ABAQUS and the result is verified with an independently developed calculation tool using MATLAB. The results show that the top rotation plays a significant role for the load bearing capacity of the masonry wall supported by slabs at both ends. It is difficult to estimate the eccentricities without a rigorous calculation.</p>


2013 ◽  
Vol 405-408 ◽  
pp. 1041-1045 ◽  
Author(s):  
Lian Qiong Zheng ◽  
Shu Li Guo ◽  
Ji Zhong Zhou

A simplified method using an equivalent slenderness ratio was suggested to calculate load-bearing capacity of concrete-filled steel tubular laced column in this paper. The significant differences between compressive and tensile strengths of concrete-filled steel tube were considered. The comparisons between the predicted Nuc and the tested Nue showed that the predicted method gives generally good predictions of the test results.


Author(s):  
Xiang Chen ◽  
Shozo Nakamura ◽  
Toshihiro Okumatsu ◽  
Takafumi Nishikawa

Although it is well known that initial deflections have a significant influence on coupled buckling strength, their quantitative influence is not clear. In this paper, a series of nonlinear finite element analyses to reveal the quantitative influence of initial deflections on coupled buckling strength are conducted with MSC.Marc. There are nine kinds of combinations about the size of local and overall initial deflections including 1/75, 1/150, 1/450 of the plate width and 1/500, 1/1000, 1/3000 of the column length. In addition, the width-thickness ratio and slenderness ratio parameters are also varied in the parametrical study. Both ranges of slenderness and the width-thickness ratio parameters are from 0.1 to 2.1. As a result, the initial deflection influence coefficient is proposed to describe the quantitative influence of local and overall initial deflections on coupled buckling strength. The numerical results reveal that the coefficient decreases with the increase of initial deflections. The sensitivity of the strength to initial deflections depends on both width-thickness and slenderness ratio parameters. The maximum decrease of 21.4% on load-bearing capacity caused by local initial deflection appears when width-thickness and slenderness ratio parameters equal to 1.2 and 2.1, respectively. Column strength is quite sensitive to overall initial deflection at the slenderness ratio parameter equal to 1.4. The maximum decrease in load-bearing capacity reaches 18.2%.


2018 ◽  
Vol 234 ◽  
pp. 04002 ◽  
Author(s):  
Glib Vatulia ◽  
Yevhen Orel ◽  
Maryna Rezunenko ◽  
Nataliia Panchenko

In the current practice of construction and design of transport facilities, structures with external reinforcement are commonly used which effectively resist compression. The use of steel-concrete and composite structures enables us to reduce material consumption and cost of structures significantly. There are a few established approaches used to evaluate the load-bearing capacity of steel-concrete structures under axial and eccentric compression, each being based on the initial prerequisites, which underlie the calculation formulas. In this paper, the functional relationship of the value of the maximum load-bearing capacity of rectangular concrete-filled steel tubular (CFST) columns under axial compression with the random eccentricity is plotted. A regression model is proposed based on the methods of mathematical statistics, which allows for the evaluation of the impact of geometrical and physical characteristics of rectangular CFST columns on the value of their load-bearing capacity. The correspondence of the obtained model to the experimental data, as well as the significance of the regression parameters are confirmed by Fisher and Student criteria.


Sign in / Sign up

Export Citation Format

Share Document