scholarly journals Vitamin C protects against chronic social isolation stress-induced weight gain and depressive-like behavior in adult male rats

2020 ◽  
Vol 54 (4) ◽  
pp. 266-274
Author(s):  
Alireza Najaf Dulabi ◽  
Zeinab Shakerin ◽  
Nasrin Mehranfard ◽  
Maedeh Ghasemi

Abstract Objective. Considering the importance of ghrelin in stress-induced hyperphagia and a role of antioxidants in decreasing body weight, in the present study, the effect of vitamin C (VitC) on ghrelin secretion and food intake following chronic social isolation (CIS) was evaluated in rats. Methods. Thirty two male Wistar rats (200–220g) were randomly divided into: control, VitC, CIS, and CIS + VitC groups. Animals received VitC (500 mg/kg/day)/saline by gavage for 3 weeks. For 24 h cumulative and post 18–20 h fasting food intake, fasting plasma ghrelin level, and body weight were measured. Gastric histopathology was also evaluated. Results. Results showed a marked increase in fasting plasma ghrelin and food intake in stressed rats compared to controls. VitC prevented the increases in stressed rats. Histological assessment indicated a positive effect of VitC on gastric glandular cells compared to control, an effect that might partially be a reason of significant increase of plasma ghrelin levels in VitC rats. Elevated plasma ghrelin in VitC group was even higher than that one in stressed group, whereas there were no significant changes in the food intake. Assessment of the percentage of changes in body weight during 21 days showed a significant increase in stressed rats compared to controls. Vitamin C treatment prevented this increase. Stressed rats also displayed depression-like behavior as indicated by sucrose test, whereas VitC ameliorated it. Conclusions. The data of the present study indicate that VitC may overcome ghrelin-induced hyperphagia and improve the abnormal feeding and depressive behavior in CIS rats.

2018 ◽  
Vol 315 (1) ◽  
pp. E29-E37 ◽  
Author(s):  
Mariana Peduti Halah ◽  
Paula Beatriz Marangon ◽  
Jose Antunes-Rodrigues ◽  
Lucila L. K. Elias

Neonatal nutritional changes induce long-lasting effects on energy homeostasis. Adiponectin influences food intake and body weight. The aim of this study was to investigate the effects of neonatal nutritional programming on the central stimulation of adiponectin. Male Wistar rats were divided on postnatal (PN) day 3 in litters of 3 (small litter, SL), 10 (normal litter, NL), or 16 pups/dam (large litter, LL). We assessed body weight gain for 60 days, adiponectin concentration, and white adipose tissue weight. We examined the response of SL, NL, and LL rats on body weight gain, food intake, oxygen consumption (V̇o2), respiratory exchange ratio (RER), calorimetry, locomotor activity, phosphorylated-AMP-activated protein kinase (AMPK) expression in the hypothalamus, and uncoupling protein (UCP)-1 in the brown adipose tissue after central stimulus with adiponectin. After weaning, SL rats maintained higher body weight gain despite similar food intake compared with NL rats. LL rats showed lower body weight at weaning, with a catch up afterward and higher food intake. Both LL and SL groups had decreased plasma concentrations of adiponectin at PN60. SL rats had increased white adipose tissue. Central injection of adiponectin decreased body weight and food intake and increased V̇o2, RER, calorimetry, p-AMPK and UCP- 1 expression in NL rats, but it had no effect on SL and LL rats, compared with the respective vehicle groups. In conclusion, neonatal under- and overfeeding induced an increase in body weight gain in juvenile and early adult life. Unresponsiveness to central effects of adiponectin contributes to the imbalance of the energy homeostasis in adult life induced by neonatal nutritional programming.


2010 ◽  
Vol 95 (1) ◽  
pp. 92-99 ◽  
Author(s):  
L.L. Bellinger ◽  
P.J. Wellman ◽  
R.B.S. Harris ◽  
E.W. Kelso ◽  
P.R. Kramer

1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


1990 ◽  
Vol 259 (3) ◽  
pp. R579-R584 ◽  
Author(s):  
S. Rivest ◽  
D. Richard

The effects of a hypothalamic paraventricular nucleus (PVN) lesion on energy balance were investigated in exercise-trained rats. Male Wistar rats weighing initially 250 g were divided into four groups. Two groups of rats underwent a bilateral PVN lesion, whereas the two remaining groups were sham operated. The PVN lesions were done electrolytically. One group from each surgical treatment was exercised, while the other group was kept in sedentary conditions. Rats were exercised on a rodent motor-driven treadmill at moderate intensity, 1 h/day for 21 consecutive days. Food intake and body weight were measured each day during the study. At the end of the treatment period, rats were killed, and carcasses were analyzed for their energy content. Serum corticosterone was measured by a competitive protein-binding assay. Energy gain and energy intake were lower in exercised rats than in sedentary controls, regardless of whether they were sham or PVN lesioned. Concurrently, there was no difference in the energy gain between PVN-lesioned and sham-operated rats, despite the fact that PVN-lesioned rats ended the experiment with a larger body weight than the sham-lesioned animals. Serum corticosterone levels were lower in PVN-lesioned rats than in sham-lesioned rats. In conclusion, the present results indicate that the PVN, the hypothalamic nucleus predominantly controlling the pituitary-adrenal axis activity, is not a prominent structure in the regulation of energy balance in exercised male Wistar rats.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Alireza Jahan-Mihan ◽  
Kea Schwarz ◽  
Leila Nynia ◽  
Tatyana Kimble

Abstract Objectives The objective of this study was to investigate the main and interactive effects of fat and sodium content of the diet on food intake, body weight and composition, glucose metabolism and blood pressure in male Wistar rats. Methods Male Wistar Rats (n = 48, initial body weight: 115.30 ± 1.73 g) were allocated into 4 groups (n = 12/group) and received one of the following diets: Normal sodium normal fat (NSNF), normal sodium high fat (NSHF), high sodium normal fat (HSNF), high sodium high fat (HSHF) diet for 12 weeks. Body weight (BW) and food intake (FI) were measured weekly. Short-term food intake (1, 2 and 12 hours food intake after 12 hours fasting) was measured at week 6. Body composition and organs’ weight were measured at week 12. Systolic (SBP) and diastolic (DBP) blood pressure, pulse and fasting blood glucose (FBG) were measured and oral glucose tolerance test (OGTT) was conducted at weeks 1, 4, 8 and 12. Results Regardless of sodium content, a greater FI (both gram and cal) was observed in rats fed normal fat diet compared with those fed high fat diet. Consistently, FI (g) at 1, 2 and 12 hours was higher in rats fed a normal fat diet. However, no difference in calorie intake was observed at any time point. Higher BW and fat (%) was observed in high fat diet groups. Moreover, greater kidneys’ weights was observed in high sodium diet groups. Fasting blood glucose was higher in rats fed a normal sodium diet compared with those fed a high sodium diet while the tAUC glucose response to glucose preload was higher in rats fed a high fat diet compared with those fed a normal fat diet which is consistent with higher body weight in high fat diet groups. Regardless of fat content of the diet, pulse was higher in rats fed a high sodium diet compared with those fed a normal sodium diet. No effect of either dietary sodium or fat content of the diet on SBP or DBP was observed. Conclusions Fat but not sodium content of the diet is a determining factor in regulation of FI and BW. Moreover, both fat and sodium content of the diet influence the glucose metabolism potentially through different mechanisms. While pulse is influenced by sodium content, the results of this study do not support the effect of sodium or fat content of the diet on either SBP or DBP. Funding Sources UNF, Brooks College of Health internal grant.


2002 ◽  
Vol 174 (2) ◽  
pp. 283-288 ◽  
Author(s):  
N Murakami ◽  
T Hayashida ◽  
T Kuroiwa ◽  
K Nakahara ◽  
T Ida ◽  
...  

Ghrelin, a 28-amino-acid peptide, has recently been isolated from the rat stomach as an endogenous ligand for the GH secretagogue receptor. We have reported previously that central or peripheral administration of ghrelin stimulates food intake, and the secretion of GH and gastric acid in rats. In the present study, we investigated how much endogenous centrally released ghrelin is involved in the control of food intake and body weight gain. We also examined the profile of ghrelin secretion from the stomach by RIA using two kinds of anti-ghrelin antiserum, one raised against the N-terminal ([Cys(12)]-ghrelin[1-11]) region and one raised against the C-terminal ([Cys(0)]-ghrelin [13-28]) region of the peptide. The former antibody recognizes specifically ghrelin with n- octanoylated Ser 3 (acyl ghrelin), and does not recognize des-acyl ghrelin. The latter also recognizes des-acyl ghrelin (i.e. total ghrelin). Intracerebroventricular treatment with the anti-ghrelin antiserum against the N-terminal region twice a day for 5 days decreased significantly both daily food intake and body weight. Des-acyl ghrelin levels were significantly higher in the gastric vein than in the trunk. Either fasting for 12 h, administration of gastrin or cholecystokinin resulted in increase of both acyl and des-acyl ghrelin levels. The ghrelin levels exhibited a diurnal pattern, with the bimodal peaks occurring before dark and light periods. These two peaks were consistent with maximum and minimum volumes of gastric content respectively. These results suggest that (1) endogenous centrally released ghrelin participates in the regulation of food intake and body weight, (2) acyl ghrelin is secreted from the stomach, (3) intestinal hormones stimulate ghrelin release from the stomach, and (4) regulation of the diurnal rhythm of ghrelin is complex, since ghrelin secretion is augmented under conditions of both gastric emptying and filling.


1982 ◽  
Vol 16 (6) ◽  
pp. 933-936 ◽  
Author(s):  
Antonio A. Nunez ◽  
Marjorie Grundman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document