scholarly journals Mitigation of replant disease by mycorrhization in horticultural plants: A review

2018 ◽  
Vol 30 (2) ◽  
pp. 269-282 ◽  
Author(s):  
Li-Hui Lü ◽  
Qiang-Sheng Wu

Abstract Replant disease refers to the result of monoculture-continuous repetitive planting of congeneric crops or coordinal crops in the same soil for many years. Such disease is recognized as one of the main limiting factors affecting plant growth and production of horticultural plants in many countries. As a result, replant disease in horticultural plants has become a world problem in agriculture and also a bottleneck restricting the sustainable development of agriculture. In general, replant disease results in unfavorable growth of horticultural plants, which is due to allelopathy, autotoxicity, and the imbalance of both soil physical-biochemical traits and soil microflora. An environmentally friendly contribution to this could be bio-controlled by beneficial microorganisms. Arbuscular mycorrhizal fungi, one of soil-inhabiting fungi, can form a symbiotic association in roots to mitigate the negative effects of replant disease in many horticultural plants. Moreover, arbuscular mycorrhizal fungi do not produce any environmental pollution in soils and are a potential biological control. The soil fungi could regulate better morphological, physiological and molecular levels in plants to respond to the disease. This review mainly outlined the current knowledge in mycorrhizal mitigation of replant disease in horticultural plants, which appears to be a promising strategy to improve growth of horticultural plants in replant soils.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


2017 ◽  
Vol 57 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Marieta Hristozkova ◽  
Maria Geneva ◽  
Ira Stancheva ◽  
Ivan Iliev ◽  
Concepción Azcón-Aguilar

AbstractPhysalis peruvianais one of the most promising tropical fruit plants because of its rapid growth, high yield, and nutritional quality. This study was designed to investigate plant development under heavy metal contamination (Cd, Pb) and responsiveness to arbuscular mycorrhizal fungi (AMF) colonization byRhizophagus clarumandClaroideoglomus claroideum. The antioxidant capacity, total lipid content and fatty acid profile in fruits, accumulation of Cd and Pb in different plant parts, plant dry biomass, and mycorrhizal colonization were determined. As a result of inoculation, a considerable reduction in Cd and Pb in the fruits was observed, compared with non-inoculated plants. The fruit number and dry weight increased in plants associated withC. claroideum.These plants also showed higher acid phosphatase activity, root protein accumulation and glomalin production. The type of antioxidant defense was AMF strain-dependent. Antioxidant activity and H2O2neutralization were enzymatic rather than non-enzymatic processes in the fruits ofC. claroideumplants compared with those forming an association withR. clarum. Mycorrhizal establishment changed the composition and concentration of fruits’ fatty acids. The ratio of unsaturated fatty acids was increased. With respect to the accumulation of bioactive compounds in golden berry the present findings are important for obtaining the optimum benefits of mycorrhizal association under unfavorable conditions.


2019 ◽  
Vol 65 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Michaela Piliarová ◽  
Katarína Ondreičková ◽  
Martina Hudcovicová ◽  
Daniel Mihálik ◽  
Ján Kraic

Abstract Arbuscular mycorrhizal fungi living in the soil closely collaborate with plants in their root zone and play very important role in their evolution. Their symbiosis stimulates plant growth and resistance to different environmental stresses. Plant root system, extended by mycelium of arbuscular mycorrhizal fungi, has better capability to reach the water and dissolved nutrients from a much larger volume of soil. This could solve the problem of imminent depletion of phosphate stock, affect plant fertilisation, and contribute to sustainable production of foods, feeds, biofuel, and raw materials. Expanded plant root systems reduce erosion of soil, improve soil quality, and extend the diversity of soil microflora. On the other hand, symbiosis with plants affects species diversity of arbuscular mycorrhizal fungi and increased plant diversity supports diversity of fungi. This review summarizes the importance of arbuscular mycorrhizal fungi in relation to beneficial potential of their symbiosis with plants, and their function in the ecosystem.


2021 ◽  
Vol 26 (02) ◽  
pp. 201-208
Author(s):  
Anass Kchikich

Nitrogen (N), one of the most important elements for plant growth, is needed by plants in large quantities. However, this nutrient has limited supply in the soil. Arbuscular mycorrhizal fungi (AMF) are known for their ability to form symbiotic association with plants and transfer the mineral nutrients to the host plants. To validate this hypothesis on sorghum plants, three ecotypes of this cereal (3p4, 3p9 and 4p11) were cultivated with and without AMF under low nitrogen concentration (0.5 mM NH4+). Growth parameters were determined and key enzymes responsible for nitrogen and carbon metabolisms such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), phosphoenolpyruvate carboxylase (PEPC), isocitrate dehydrogenase (ICDH), malate dehydrogenase (MDH) and asparate aminotransferase (AAT) were measured. For the three sorghum ecotypes, mycorrhizal plants showed a higher plant growth compared to the control plants. The biochemical parameters revealed a significant increase in the nitrogen assimilatory enzymes; GS and GDH in the leaves and roots of mycorrhizal plants. Furthermore, mycorrhizal fungi also appear to have a significant effect on carbon assimilatory enzymes. These enzymes are known to have a cardinal role in the provision of carbon skeletons essential for the assimilation of ammonium and thus, amino acids synthesis. Our study indicates clearly that AMF can be an efficient way to optimize nitrogen uptake and/or assimilation by plants and thus improve the crop yields with lower amount of nitrogen fertilizers. © 2021 Friends Science Publishers


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
María Josefina Bompadre ◽  
Mariana Pérgola ◽  
Laura Fernández Bidondo ◽  
Roxana Paula Colombo ◽  
Vanesa Analía Silvani ◽  
...  

The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains ofRhizophagus irregularis(GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.


Sign in / Sign up

Export Citation Format

Share Document