scholarly journals Simultaneous Effects of Heat Transfer and Variable Viscosity on Peristaltic Transport of Casson Fluid Flow in an Inclined Porous Tube

2019 ◽  
Vol 24 (2) ◽  
pp. 309-328 ◽  
Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
H. Vaidya ◽  
K.V. Prasad

Abstract The present study investigates the combined effects of varying viscosity and heat transfer on a Casson fluid through an inclined porous axisymmetric tube in the presence of slip effects. The modeled governing equations are solved analytically by considering the long wavelength and small Reynolds number approximations. The numerical integration is employed to obtain pressure rise and frictional force. A parametric analysis has been presented to study the effects of the Darcy number, angle of inclination, varying viscosity, velocity slip, thermal slip, yield stress, amplitude ratio, Prandtl number and Eckert number on the pressure rise, pressure gradient, streamlines, frictional force and temperature. The study reveals that an increase in the angle of inclination and viscosity parameter has a proportional increase in the pressure rise. Also, an increase in the porosity causes a significant reduction in the pressure rise.

2019 ◽  
Vol 393 ◽  
pp. 16-30 ◽  
Author(s):  
Gudekote Manjunatha ◽  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
K.V. Prasad

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.


2012 ◽  
Vol 433-440 ◽  
pp. 331-338 ◽  
Author(s):  
M. Pavan ◽  
N V S Varun ◽  
B Purushotham ◽  
N R Swaminathan

In this paper, the peristaltic flow of a fluid of variable viscosity in a non uniform tube or channel lined with porous material is studied. This model is suitable for the pumps whose inner surface of the tube is rough, the roughness that arises due to corrugations plays an important role in pumping and in the biological systems such as blood vessels containing tissue region. The flow in the free flow of the tube is governed by Navier-Stokes equation and the flow in the permeable boundary is described by Darcy law. It is observed that the magnitude of peak pressure rise decreases with increase in flow rate and increases with increasing amplitude ratio and increasing Darcy number. It shows that the larger the permeability of porous medium, the greater the pressure rise against which the pump works. It is also observed that as the viscosity decreases the pressure rise increases and for different values of mean flow rate the frictional force exhibits opposite behavior to that of pressure rise. The trough in the frictional force increases with decreasing amplitude ratio and decreases with increasing Darcy number which shows that the increase in permeability of wall causes less frictional forces. The decrease in viscosity makes the peristaltic pump to work under less frictional force.


Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
K. V. Prasad ◽  
Hanumesh Vaidya ◽  
Saraswati

The present article addresses the peristaltic flow of a Jeffery fluid over an inclined axisymmetric porous tube with varying viscosity and thermal conductivity. Velocity slip and convective boundary conditions are considered. Resulting governing equations are solved using long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, streamline, pressure gradient, temperature, pressure rise, and frictional force. The MATLAB numerical simulations are utilized to compute pressure rise and frictional force. The impacts of various physical parameters in the interims for time-averaged flow rate with pressure rise and is examined. The consequences of sinusoidal, multi-sinusoidal, triangular, trapezoidal, and square waveforms on physiological parameters are analyzed and discussed through graphs. The analysis reveals that the presence of variable viscosity helps in controlling the pumping performance of the fluid.


This paper concerns with the transfer of heat and hall current effects on peristaltic flow of a Bingham fluid in a channel is analysis. Resulting differential equations after implementation of small Reynolds number and long wavelength considerations are numerically solved. The expressions for different parameters like pressure rise, flow rate and frictional force are determined. The effect of magnetic field, Darcy number, yield stress, amplitude ratio, Hall parameter and the temperature on pressure gradient, pumping characteristics and frictional force are discussed through nature of graphs


2014 ◽  
Vol 07 (06) ◽  
pp. 1450060 ◽  
Author(s):  
V. P. Rathod ◽  
D. Laxmi

In this paper, we study the effects of heat transfer on the peristaltic magneto-hydrodynamic (MHD) flow of a Bingham fluid through a porous medium in a channel. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large in comparison with the radius of the channel) and low Reynolds number are used to linearize the governing equations. The velocity field for the model of interest is solved by Adomian decomposition method. The expressions for pressure rise, flow rate and frictional force are obtained. The effect of magnetic field, Darcy number, yield stress, amplitude ratio and the temperature on the axial pressure gradient, pumping characteristics and frictional force are discussed through graphs.


Author(s):  
D. S. Sankar

AbstractThe peristaltic transport of Casson fluid in a channel and also in an inclined tube is analyzed mathematically, using long wavelength approximation and low Reynolds number assumption. The expressions for the velocity, stream function, flow rate, pressure rise and frictional force at the wall are obtained. It is found that the pressure rise decreases with the increase of the time mean flow rate and angle of inclination and increases with the increase of stress ratio and amplitude ratio. It is also noticed that the frictional force increases with the increase of the stress ratio and decreases with the increase of the angle of inclination. The estimates of the increase in the pressure rise are higher in channel flow compared to that of the inclined tube flow and the estimates of the increase in the frictional force are higher in inclined tube flow compared to that of the channel flow.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Hassan Rachid

AbstractIn the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers’ model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.


Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar ◽  
Deog Hee Doh

Abstract A two dimensional steady and laminar mixed convection flow in lid-driven porous cavity filled with Cu-water nanofluid is presented in this numerical investigation. The vertical side walls are considered with two spatially varying sinusoidal temperature distributions of different amplitude ratios and phase deviations while the horizontal walls are thermally insulated. The transport equations are solved using finite volume method on a uniformly staggered grid system. The variations of fluid flow, heat transfer, mid-plane velocity, and Nusselt number were discussed over a wide range of Richardson number $(Ri)$ , Darcy number $(Da)$ , porosity $(\epsilon)$ , amplitude ratio $(\epsilon_a)$ , phase deviation $(\phi)$ , and solid volume fraction $(\chi)$ . The results show that the total heat transfer rate increases on increasing Darcy number, amplitude ratio, and solid volume fraction with fixed $Ri$ . For $\phi=\frac{3\pi}{4}$ , the average Nusselt number gets its maximum value when the natural convection dominates. It is found that for $Ri =0.01$ and $1$ , the total heat transfer rate decreases on increasing porosity whereas for $Ri=100$ it is contradictory. It is also observed that the heat transfer is affected mainly on the right side wall where the phase deviation varies from $0$ to $\pi$ . But the effect of $\phi$ is not significant on the left side wall. The sinusoidal temperature distribution along the sidewalls gives better heat transfer rate than the uniform temperature.


2019 ◽  
Vol 392 ◽  
pp. 158-177 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
Gudekote Manjunatha ◽  
K.V. Prasad

The present study investigates the effects of slip and heat transfer on peristaltic mechanism of Bingham fluid in an inclined tube. The sinusoidal, multi-sinusoidal, triangular, square and trapezoidal wave forms are considered. The analysis has been carried out under the assumptions of long wavelength and small Reynold's number approximations. The closed-form solutions are obtained for velocity, plug flow velocity, pressure gradient, streamlines, and temperature. The numerical integration is employed to investigate the effects of pressure rise and frictional force. The influence of relevant parameters on physiological quantities of interest is analyzed and discussed through graphs. The study reveals that velocity and thermal slip have a decreasing effect on velocity and temperature. Further, it is noticed that the volume of trapped bolus increases for increasing values of velocity slip parameter.


Sign in / Sign up

Export Citation Format

Share Document