scholarly journals Drought forecasting using new machine learning methods / Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod

2013 ◽  
Vol 18 (9) ◽  
pp. 3-12 ◽  
Author(s):  
Anteneh Belayneh ◽  
Jan Adamowski

Abstract In order to have effective agricultural production the impacts of drought must be mitigated. An important aspect of mitigating the impacts of drought is an effective method of forecasting future drought events. In this study, three methods of forecasting short-term drought for short lead times are explored in the Awash River Basin of Ethiopia. The Standardized Precipitation Index (SPI) was the drought index chosen to represent drought in the basin. The following machine learning techniques were explored in this study: artificial neural networks (ANNs), support vector regression (SVR), and coupled wavelet-ANNs, which pre-process input data using wavelet analysis (WA). The forecast results of all three methods were compared using two performance measures (RMSE and R2). The forecast results of this study indicate that the coupled wavelet neural network (WA-ANN) models were the most accurate models for forecasting SPI 3 (3-month SPI) and SPI 6 (6-month SPI) values over lead times of 1 and 3 months in the Awash River Basin in Ethiopia.

2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Sarat Das ◽  
Pijush Samui ◽  
Shakilu Khan ◽  
Nagarathnam Sivakugan

AbstractStability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper describes prediction of the residual strength of soil based on index properties using two machine learning techniques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the error on the training data only. The ANN models along with their generalizations capabilities are presented here for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than the developed ANN models. A model equation has been developed for prediction of the residual strength based on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate the effects of different index properties on the residual strength of soil.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Belayneh ◽  
J. Adamowski

Drought forecasts can be an effective tool for mitigating some of the more adverse consequences of drought. Data-driven models are suitable forecasting tools due to their rapid development times, as well as minimal information requirements compared to the information required for physically based models. This study compares the effectiveness of three data-driven models for forecasting drought conditions in the Awash River Basin of Ethiopia. The Standard Precipitation Index (SPI) is forecast and compared using artificial neural networks (ANNs), support vector regression (SVR), and wavelet neural networks (WN). SPI 3 and SPI 12 were the SPI values that were forecasted. These SPI values were forecast over lead times of 1 and 6 months. The performance of all the models was compared using RMSE, MAE, andR2. The forecast results indicate that the coupled wavelet neural network (WN) models were the best models for forecasting SPI values over multiple lead times in the Awash River Basin in Ethiopia.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5159
Author(s):  
Xijin Shi ◽  
Sheng-Jen Hsieh ◽  
Roseli Aparecida Francelin Romero

This study focuses on investigating and predicting two hidden structures: plant root system architecture and non-visible bubbles in plexiglass. Current approaches are damaging, expensive, or time-consuming. Infrared imaging was used to study the root structure and depth of small plants and to detect the diameter and depth of bubbles in plexiglass. A finite element analysis (FEA) model was built to simulate the infrared imaging process to realize the detection and prediction given the amount of heat flux required to obtain thermal images and data. For the root system, based on a tree structure thermal profile over time derived from the FEA model, a line scan method was developed to predict root structure. The main root branches can be viewed from the detection results. Polynomial regression, support vector machine (SVM), and artificial neural network (ANN) models were designed to predict root depth. For bubble defects, three ANN models were developed to predict bubble size using temperature data generated by the FEA model. Results indicated that these models provide valid predictions. Statistical tests were applied to evaluate and compare the above predictive models. Results suggest that infrared imaging and machine learning models can be used to provide information on both hidden structures.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2020 ◽  
Author(s):  
Azhagiya Singam Ettayapuram Ramaprasad ◽  
Phum Tachachartvanich ◽  
Denis Fourches ◽  
Anatoly Soshilov ◽  
Jennifer C.Y. Hsieh ◽  
...  

Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) pose a substantial threat as endocrine disruptors, and thus early identification of those that may interact with steroid hormone receptors, such as the androgen receptor (AR), is critical. In this study we screened 5,206 PFASs from the CompTox database against the different binding sites on the AR using both molecular docking and machine learning techniques. We developed support vector machine models trained on Tox21 data to classify the active and inactive PFASs for AR using different chemical fingerprints as features. The maximum accuracy was 95.01% and Matthew’s correlation coefficient (MCC) was 0.76 respectively, based on MACCS fingerprints (MACCSFP). The combination of docking-based screening and machine learning models identified 29 PFASs that have strong potential for activity against the AR and should be considered priority chemicals for biological toxicity testing.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 21 ◽  
Author(s):  
Sukanya Panja ◽  
Sarra Rahem ◽  
Cassandra J. Chu ◽  
Antonina Mitrofanova

Background: In recent years, the availability of high throughput technologies, establishment of large molecular patient data repositories, and advancement in computing power and storage have allowed elucidation of complex mechanisms implicated in therapeutic response in cancer patients. The breadth and depth of such data, alongside experimental noise and missing values, requires a sophisticated human-machine interaction that would allow effective learning from complex data and accurate forecasting of future outcomes, ideally embedded in the core of machine learning design. Objective: In this review, we will discuss machine learning techniques utilized for modeling of treatment response in cancer, including Random Forests, support vector machines, neural networks, and linear and logistic regression. We will overview their mathematical foundations and discuss their limitations and alternative approaches all in light of their application to therapeutic response modeling in cancer. Conclusion: We hypothesize that the increase in the number of patient profiles and potential temporal monitoring of patient data will define even more complex techniques, such as deep learning and causal analysis, as central players in therapeutic response modeling.


Sign in / Sign up

Export Citation Format

Share Document