scholarly journals Geochemistry, mineral chemistry and P-T evaluation of metasediments of Bahram-Gur complex, ES Sanandaj-Sirjan zone, Iran

Mineralogia ◽  
2019 ◽  
Vol 50 (1-4) ◽  
pp. 34-68
Author(s):  
Hadiseh Rahimi Sadegh ◽  
Hesam Moeinzadeh ◽  
Kazu Nakashima

AbstractThe Bahram-Gur area in the southeastern part of the Sanandaj – Sirjan metamorphic zone, contains metabasites and metasediments. The metasedimentary rocks are mainly garnet schists and garnet-staurolite schists that were metamorphosed under amphibolite facies conditions. The rocks consist of garnet ± staurolite, biotite, muscovite, chlorite and quartz. The geochemistry of the Bahram-Gur metasediments classifies them as quartziferous sedimentary rocks. The protoliths of the metasedimentary rocks were close to greywackes from an ensialic arc basin depositional setting, with a source comprising mostly mixture of acid and intermediate magmatic rocks in the upper continental crust. The metamorphic conditions of formation of the Bahram-Gur metasedimentary are investigated by geothermobarometric methods. The results show that the metasedimentary rocks formed at temperatures of 600-750°C and pressures of 5-7.5 kbar.

Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.


2016 ◽  
Vol 25 ◽  
pp. 418-433 ◽  
Author(s):  
Rahele MORADI ◽  
Mohammad BOOMERI ◽  
Sasan BAGHERI ◽  
Kazuo NAKASHIMA

2021 ◽  
Author(s):  
junyu Li ◽  
shunyun Cao ◽  
Xuemei Cheng ◽  
Haobo Wang ◽  
Wenxuan Li

<p>Adakite‐like potassic rocks are widespread in post-collisional settings and provide potential insights into deep crustal or crust-mantle interaction processes including asthenosphere upwelling, partial melting, lower crustal flow, thickening and collapse of the overthickened orogen. However, petrogenesis and compositional variation of these adakite‐like potassic rocks and their implications are still controversial. Potassic magmatic rocks are abundant developed in the Jinshajiang–Ailaoshan tectono-magmatic belt that stretches from eastern Tibet over western Yunnan to Vietnam. Integrated studies of structure, geochronology, mineral compositions and geochemistry indicate adakite-like potassic rocks with different deformation are exposed along the Ailaoshan-Red River shear zone. The potassic felsic rocks formed by mixing and partial melting between enriched mantle-derived ultrapotassic and thickened ancient crust-derived magmas. The mixing of the mafic and felsic melts and their extended fractional crystallization of plagioclase, K-feldspar, hornblende and biotite gave rise to the potassic magmatic rocks. Zircon geochronology provide chronological markers for emplacement at 35–37 Ma of these adakite-like potassic rocks along the shear zone. Temperature and pressure calculated by amphibole-plagioclase thermobarometry range from 3.5 to 5.9 kbar and 650 to 750 ℃, respectively, and average emplacement depths of ca. 18 km for granodiorite within this suite. In combination with the results of the Cenozoic potassic magmatism in the Jinshajiang–Ailaoshan tectono-magmatic belt, we suggest that in addition to partial melting of the thickened ancient continental crust, magma underplating and subsequent crust-mantle mixing beneath the ancient continental crust have also played an important role in crustal reworking and strongly affected the rheological properties and density of rocks. The exhumation underlines the role of lateral motion of the Ailaoshan-Red River shear zone initiation by potassic magma-assisted rheological weakening and exhumation at high ambient temperatures within the shear zone.</p>


Geology ◽  
2021 ◽  
Author(s):  
Iain K. Pitcairn ◽  
Nikolaos Leventis ◽  
Georges Beaudoin ◽  
Stephane Faure ◽  
Carl Guilmette ◽  
...  

The sources of metals enriched in Archean orogenic gold deposits have long been debated. Metasedimentary rocks, which are generally accepted as the main metal source in Phanerozoic deposits, are less abundant in Archean greenstone belts and commonly discounted as a viable metal source for Archean deposits. We report ultralow-detection-limit gold and trace-element concentrations from a suite of metamorphosed sedimentary rocks from the Abitibi belt and Pontiac subprovince, Superior Province, Canada. Systematic decreases in the Au content with increasing metamorphic grade indicate that Au was mobilized during prograde metamorphism. Mass balance calculations show that over 10 t of Au, 30,000 t of As, and 600 t of Sb were mobilized from 1 km3 of Pontiac subprovince sedimentary rock metamorphosed to the sillimanite metamorphic zone. The total gold resource in orogenic gold deposits in the southern Abitibi belt (7500 t Au) is only 3% of the Au mobilized from the estimated total volume of high-metamorphic-grade Pontiac sedimentary rock in the region (25,000 km3), indicating that sedimentary rocks are a major contributor of metals to the orogenic gold deposits in the southern Abitibi belt.


2016 ◽  
pp. 46-54 ◽  
Author(s):  
Yenny Paola Valencia Giraldo ◽  
Luis Carlos Escobar Arenas ◽  
Juliana Mendoza Ramirez ◽  
Daniel Delgado Sierra ◽  
Andrés Leonardo Cárdenas Rozo

Even though only 11.5% of Antioquia’s area has outcrops of sedimentary rocks, a review of the literature and the development of a digital map of fossil localities (27), allows us to conclude that the region has a great palaeontological potential. The data show that Antioquia’s fossil occurrences date from Ordovician (~ 485.4 to ~ 443.8Ma) to Quaternary (~ 2.6Ma to the Present). Moreover, there are macro-fossils belonging to different phyla (i.e. Chordata, Echinodermata, Hemichordata, Mollusca and Trachaeophyta). The oldest paleofauna in the area, consists of graptolites and trilobites recorded in Paleozoic metasedimentary rocks, whereas marine mollusks and echinoderms compose the major fossil assemblages of the Cretaceous. The paleoflora (i.e. fossil leaves and petrified wood) in the area is associated with to the Amagá Formation (Oligocene - Miocene). Finally, fossils of terrestrial vertebrates (i.e. mastodons and horses) are recorded in Quaternary deposits.


2009 ◽  
Vol 9 (5) ◽  
pp. 843-853 ◽  
Author(s):  
A. Ahmadi Khalaji ◽  
Z. Tahmasbi ◽  
R. Zarei Sahamieh

Sign in / Sign up

Export Citation Format

Share Document