scholarly journals Use of scanning area related multiple degradation profiles for AFM assessment of polystyrene/PC61BM nanocomposite surface deterioration

2018 ◽  
Vol 36 (3) ◽  
pp. 397-402 ◽  
Author(s):  
Andrzej Sikora ◽  
Magdalena Moczała ◽  
Bartosz Boharewicz

AbstractIn this paper, we present a novel approach developed in order to increase the reliability and accuracy of AFM investigation of morphological changes in a nanocomposite due to exposure to the media causing its degradation. By precise sample positioning and repetitive determination of the roughness changes at specific spots, we were able to create space-related degradation profiles. As the multi-step experiment based on exposure/scanning cycle was performed, we were able to observe a unique response of investigated samples revealing spatial inhomogeneity of the material. In order to present the measurement methodology, we used polystyrene samples containing various quantities of PC61BM nanofiller (0 %, 5 %, 10 % and 20 % of mass proportion), which was exposed to 370 nm UV radiation. Obtained data can be recognized as specific fingerprints of investigated materials. The solution based on creation and analysis of degradation profiles can be particularly useful for diagnostics of nanomaterials and nanocomposites to test their resistance to various conditions.

2013 ◽  
Vol 18 (2-3) ◽  
pp. 33-41
Author(s):  
Dominik Sankowski ◽  
Marcin Bakala ◽  
Rafał Wojciechowski

Abstract The good quality of several manufactured components frequently depends on solidliquid interactions existing during processing. Nowadays, the research in material engineering focuses also on modern, automatic measurement methods of joining process properties, i.a. wetting force and surface tension, which allows for quantitative determination of above mentioned parameters. In the paper, the brazes’ dynamic properties in high-temperatures’ measurement methodology and the stand for automatic determination of braze’s properties, constructed and implmented within the research grant nr KBN N N519 441 839 - An integrated platform for automatic measurement of wettability and surface tension of solders at high temperatures, are widely described


Author(s):  
Mark Morris ◽  
James Mohr ◽  
Esteban Ortiz ◽  
Steven Englebretson

Abstract Determination of metal bridging failures on plastic encapsulated devices is difficult due to the metal etching effects that occur while removing many of the plastic mold compounds. Typically, the acids used to remove the encapsulation are corrosive to the metals that are found within the device. Thus, decapsulation can result in removal of the failure mechanism. Mechanical techniques are often not successful due to damage that results in destruction of the die and failure mechanism. This paper discusses a novel approach to these types of failures using a silicon etch and a backside evaluation. The desirable characteristics of the technique would be to remove the silicon and leave typical device metals unaffected. It would also be preferable that the device passivation and oxides not be etched so that the failure location is not disturbed. The use of Tetramethylammonium Hydroxide (TMAH), was found to fit these prerequisites. The technique was tested on clip attached Schottky diodes that exhibited resistive shorting. The use of the TMAH technique was successful at exposing thin solder bridges that extruded over the edge of the die resulting in failure.


2021 ◽  
pp. 1-9
Author(s):  
Javier Carrillo-Reche ◽  
Adrian C. Newton ◽  
Richard S. Quilliam

Abstract A low-cost technique named ‘on-farm’ seed priming is increasingly being recognized as an effective approach to maximize crop establishment. It consists of anaerobically soaking seeds in water before sowing resulting in rapid and uniform germination, and enhanced seedling vigour. The extent of these benefits depends on the soaking time. The current determination of optimal soaking time by germination assays and mini-plot trials is resource-intensive, as it is species/genotype-specific. This study aimed to determine the potential of the seed respiration rate (an indicator of metabolic activity) and seed morphological changes during barley priming as predictors of the priming benefits and, thus, facilitate the determination of optimal soaking times. A series of germination tests revealed that the germination rate is mostly attributable to the rapid hydration of embryo tissues, as the highest gains in the germination rate occurred before the resumption of respiration. Germination uniformity, however, was not significantly improved until seeds were primed for at least 8 h, that is, after a first respiration burst was initiated. The maximum seedling vigour was attained when the priming was stopped just before the beginning of the differentiation of embryonic axes (20 h) after which vigour began to decrease (‘over-priming’). The onset of embryonic axis elongation was preceded by a second respiration burst, which can be used as a marker for priming optimization. Thus, monitoring of seed respiration provides a rapid and inexpensive alternative to the current practice. The method could be carried out by agricultural institutions to provide recommended optimal soaking times for the common barley varieties within a specific region.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Navid Shahangian ◽  
Damon Honnery ◽  
Jamil Ghojel

Interest is growing in the benefits of homogeneous charge compression ignition engines. In this paper, we investigate a novel approach to the development of a homogenous charge-like environment through the use of porous media. The primary purpose of the media is to enhance the spread as well as the evaporation process of the high pressure fuel spray to achieve charge homogenization. In this paper, we show through high speed visualizations of both cold and hot spray events, how porous media interactions can give rise to greater fuel air mixing and what role system pressure and temperature plays in further enhancing this process.


Refractories ◽  
1989 ◽  
Vol 30 (5-6) ◽  
pp. 361-362
Author(s):  
V. S. Rybakov ◽  
V. A. Esipova ◽  
E. E. Glinskii

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nathan Moles

PurposeConventional approaches to digital preservation posit that archives should define a Designated Community, or future user group, for whom they preserve digital information. Archivists can then use their knowledge of these users as a reference to help them deliver digital information that is intelligible and usable. However, this approach is challenging for archives with mandates to serve wide and diverse audiences; these archives risk undermining their efforts by focusing on the interests of a narrow user group.Design/methodology/approachA unique approach to this challenge was developed in the context of a project to build a digital preservation program at the Ontario Jewish Archives (OJA). It draws from previous research on this topic and is based on a combination of practical and theoretical considerations.FindingsThe approach described here replaces the reference of a Designated Community with three core components: a re-articulation of the Open Archival Information System (OAIS) mandatory responsibilities; the identification of three distinct tiers of access for digital records; and the implementation of an access portal that allows digital records to be accessed and rendered online. Together with supplemental shifts in reference points, they provide an alternative to the concept of a Designated Community in the determination of preservation requirements, the identification of significant properties, the creation of Representation Information and in the evaluation of success.Originality/valueThis article contributes a novel approach to the ongoing conversation about the Designated Community in digital preservation, its application and its limitations in an archival context.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1275 ◽  
Author(s):  
Kun Shang ◽  
Siyu Song ◽  
Yaping Cheng ◽  
Lili Guo ◽  
Yuxin Pei ◽  
...  

A novel approach for preparing carbohydrate chips based on polydopamine (PDA) surface to study carbohydrate–lectin interactions by quartz crystal microbalance (QCM) biosensor instrument has been developed. The amino-carbohydrates were immobilized on PDA-coated quartz crystals via Schiff base reaction and/or Michael addition reaction. The resulting carbohydrate-chips were applied to QCM biosensor instrument with flow-through system for real-time detection of lectin–carbohydrate interactions. A series of plant lectins, including wheat germ agglutinin (WGA), concanavalin A (Con A), Ulex europaeus agglutinin I (UEA-I), soybean agglutinin (SBA), and peanut agglutinin (PNA), were evaluated for the binding to different kinds of carbohydrate chips. Clearly, the results show that the predicted lectin selectively binds to the carbohydrates, which demonstrates the applicability of the approach. Furthermore, the kinetics of the interactions between Con A and mannose, WGA and N-Acetylglucosamine were studied, respectively. This study provides an efficient approach to preparing carbohydrate chips based on PDA for the lectin–carbohydrate interactions study.


Sign in / Sign up

Export Citation Format

Share Document