scholarly journals The Use of a Stereovision System in Shape Detection of the Side Surface of the Body of the Mining Machine Working Unit

2020 ◽  
Vol 3 (1) ◽  
pp. 251-271
Author(s):  
Piotr Cheluszka ◽  
Amadeus Jagieła-Zając

AbstractEnsuring the compliance of the finished product with the project during the manufacturing of cutting heads/drums of the mining machines, largely determines the efficiency of rock mining, especially hard-to-cut rocks. The manufacturing process of these crucial elements of cutting machines is being robotized in order to ensure high accuracy and repeatability. This determines, among others the need to assess in real-time the degree of the approach of pick holders positioned by the industrial robot to the side surface of the working unit of the cutting machine in their target position. This problem is particularly important when in the manufacturing process are used the bodies of decommissioned cutting heads/drums, from which old pick holders have been removed. The shape and external dimensions of these hulls, unless they are subjected to regeneration, may differ quite significantly from the nominal ones. The publication, on the example of a road header cutting head, presents the procedure for automatically identifying and indexing markers displayed on its side surface, recorded on measuring photos by two digital cameras of a 3D vision system. Experimental research of the developed method was carried out using the KUKA VisionTech vision system installed on the test stand in the robotics laboratory of the Department of Mining Mechanization and Robotization at the Faculty of Mining, Safety Engineering and Industrial Automation of the Silesian University of Technology. Data processing was carried out in the Matlab environment using the libraries of the Image Processing Toolbox. The functions provided in this library were used in the developed algorithm, implemented in the software. This algorithm allows automatic identification of markers located in the images of the side surface of the cutting head. This is the basis for determining their location in space. The publication presents a method of segmenting images recorded by cameras into homogeneous areas. The method of separating interesting areas from the image by comparison to the pattern was presented. Also shown is the method of the automatic numbering of mutually matching pairs of markers on photos from two cameras included in the vision system depending on the spatial orientation of the marker grid in the measuring images.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 295
Author(s):  
Piotr Cheluszka ◽  
Amadeus Jagieła-Zając

For effective mining, it is essential to ensure that the picks are positioned correctly on the working unit of a mining machine. This is due to the fact that the design of roadheader cutting heads/drums using computer-aided tools is based on the operating conditions of the roadheader/shearer/milling machine. The geometry of the cutting head is optimized for selected criteria by simulating the mining process using a computer. The reclaimed cutting head bodies that are utilized in production are manufactured again in the overhaul process. Ensuring that the dimensions of the cutting head bodies match the rated dimensions is labor-intensive and involves high production costs. For dimensional deviations of the cutting head bodies, it is necessary to control the position of the pick holders relative to the cutting head side surface in real time during robotic-assisted assembly. This article discusses the possibility of utilizing a stereovision system for calculating the distance between the pick holder base and the roadheader cutting head side surface at the point where the pick holder is mounted. The proposed measurement method was tested on a robotic measurement station constructed for the purpose of the study. A mathematical measurement model and procedures that allow automatic positioning of the camera system to the photographed objects, as well as acquisition and analysis of the measurement images, were developed. The proposed method was validated by using it for measuring the position of the pick holders relative to the side surface of the working unit of a mining excavating machine, focusing on its application in robotic technology. The article also includes the results observed in laboratory tests performed on the developed measurement method with an aim of determining its suitability for the metrology task under consideration.


2015 ◽  
Vol 809-810 ◽  
pp. 1237-1242 ◽  
Author(s):  
Viorel Cohal ◽  
Alexandru Cohal

In a manufacturing process it may be necessary to distinguish the parts of various types produced by different machine-tools and placed on a conveyor. Using an artificial vision system represents a possible solution. Images of the parts can be periodically taken using a video camera. It is considered that all parts are positioned with one of the faces which defines its type on the upper side. Thus, parts’ recognition can be solved by recognizing the shapes from the images. In addition, information about position and orientation of parts can be determined using the captured images. All these information are listed in a text file which can be used by a decision algorithm. This algorithm can choose which parts are useful to assemble different objects. An industrial robot can be commanded using a program written in RobotStudio environment’s programming language (RAPID) to pick the needed parts and place them in a storage area.This paper describes a recognition and measurement of position and orientation method of the different parts produced. In addition, details about implementing this method in MATLAB environment using Image Processing Toolbox and geometrical relations are provided gradually.


1983 ◽  
Vol 16 (20) ◽  
pp. 337-341
Author(s):  
V.M. Grishkin ◽  
F.M. Kulakov

2018 ◽  
Vol 29 (1) ◽  
pp. 41-84 ◽  
Author(s):  
Narpat Ram Sangwa ◽  
Kuldip Singh Sangwan

Purpose The purpose of this paper is to propose an integrated performance measurement framework to measure the effect of lean implementation throughout all functions of an organization. Design/methodology/approach The paper identifies the seven categories representing all organizational functions. These categories have been divided into 26 performance dimensions and key performance indicators (KPIs) for each performance dimension have been identified to measure lean performance. The interrelationship of each category with lean principles and/or lean wastes has been identified. KPIs are developed on the basis of identified criteria, frequency analysis of existing literature, and discussion with industry professionals. Finally, an integrated performance measurement framework is proposed. Findings The proposed framework evaluates the organization under seven categories – manufacturing process, new product development (NPD), human resource management, finance, administration, customer management, and supplier management. In total, 26 dimensions and 119 key performance indicators have been identified under the seven categories. Research limitations/implications The proposed framework is a conceptual framework and it is to be tested by empirical and cross-sectional studies. Originality/value The main novelty of the research is that the leanness of the organization has been measured throughout the supply chain of the organization in an integrated way. The various areas of measurement are manufacturing process, NPD, finance, administration, customer management, and supplier management. Further, the proposed KPIs are also categorized as qualitative or quantitative, strategic or operational, social or technical, financial or non-financial, leading or lagging, static or dynamic. This paper contributes to the body of knowledge in performance measurement.


2021 ◽  
Author(s):  
Yiyu Chen ◽  
Abhinav Pandey ◽  
Zhiwei Deng ◽  
Anthony Nguyen ◽  
Ruiqi Wang ◽  
...  

Abstract The global COVID-19 pandemic has inevitably made disinfection a daily routine to ensure the safety of public and private spaces. However, the existing disinfection procedures are time-consuming and require intensive human labor to apply chemical-based disinfectant onto contaminated surfaces. In this paper, a robot disinfection system is presented to increase the automation of the disinfection task to assist humans in performing routine disinfection safely and efficiently. This paper presents a semi-autonomous quadruped robot called LASER-D for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to control the spray action without an extra stabilization mechanism. The spraying unit is mounted on the robot’s back and controlled by the robot computer. The control architecture is designed based on force control, resulting in navigating rough terrains and the flexibility in controlling the body motion during standing and walking for the disinfection task. The robot also uses the vision system to improve localization and maintain desired distance to the disinfection surface. The system incorporates image processing capability to evaluate disinfected regions with high accuracy. This feedback is then used to adjust the disinfection plan to guarantee that all assigned areas are disinfected properly. The system is also equipped with highly integrated simulation software to design, simulate and evaluate disinfection plans effectively. This work has allowed the robot to successfully carry out effective disinfection experiments while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.


2021 ◽  
Author(s):  
Randal Schumacher.

The fundamental task of a space vision system for rendezvous, capture, and servicing of satellites on-orbit is the real-time determination of the motion of the target vehicle as observed on-board a chaser vehicle. Augmenting the architecture to incorporate the highly regarded Kalman filtering technique can synthesize a system that is more capable, more efficient and more robust. A filter was designed and testing was conducted in an inertial environment and then in a more realistic relative motion orbital rendezvous scenario. The results indicate that a Dynamic Motion Filter based on extended Kalman filtering can provide the vision system routines with excellent initialization leading to faster convergence, reliable pose estimation at slower sampling rates, and the ability to estimate target position, velocity, orientation, angular velocity, and mass center location.


2004 ◽  
Vol 92 (4) ◽  
pp. 2380-2393 ◽  
Author(s):  
M. A. Admiraal ◽  
N.L.W. Keijsers ◽  
C.C.A.M. Gielen

We have investigated pointing movements toward remembered targets after an intervening self-generated body movement. We tested to what extent visual information about the environment or finger position is used in updating target position relative to the body after a step and whether gaze plays a role in the accuracy of the pointing movement. Subjects were tested in three visual conditions: complete darkness (DARK), complete darkness with visual feedback of the finger (FINGER), and with vision of a well-defined environment and with feedback of the finger (FRAME). Pointing accuracy was rather poor in the FINGER and DARK conditions, which did not provide vision of the environment. Constant pointing errors were mainly in the direction of the step and ranged from about 10 to 20 cm. Differences between binocular fixation and target position were often related to the step size and direction. At the beginning of the trial, when the target was visible, fixation was on target. After target extinction, fixation moved away from the target relative to the subject. The variability in the pointing positions appeared to be related to the variable errors in fixation, and the co-variance increases during the delay period after the step, reaching a highly significant value at the time of pointing. The significant co-variance between fixation position and pointing is not the result of a mutual dependence on the step, since we corrected for any direct contributions of the step in both signals. We conclude that the co-variance between fixation and pointing position reflects 1) a common command signal for gaze and arm movements and 2) an effect of fixation on pointing accuracy at the time of pointing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Junzhi Yu ◽  
Kai Wang ◽  
Min Tan ◽  
Jianwei Zhang

This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.


Sign in / Sign up

Export Citation Format

Share Document