scholarly journals Measurement of the pick holders position on the side surface of the cutting head of a mining machine with the use of stereoscopic vision

Author(s):  
A Jagieła–Zając ◽  
P Cheluszka
Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 295
Author(s):  
Piotr Cheluszka ◽  
Amadeus Jagieła-Zając

For effective mining, it is essential to ensure that the picks are positioned correctly on the working unit of a mining machine. This is due to the fact that the design of roadheader cutting heads/drums using computer-aided tools is based on the operating conditions of the roadheader/shearer/milling machine. The geometry of the cutting head is optimized for selected criteria by simulating the mining process using a computer. The reclaimed cutting head bodies that are utilized in production are manufactured again in the overhaul process. Ensuring that the dimensions of the cutting head bodies match the rated dimensions is labor-intensive and involves high production costs. For dimensional deviations of the cutting head bodies, it is necessary to control the position of the pick holders relative to the cutting head side surface in real time during robotic-assisted assembly. This article discusses the possibility of utilizing a stereovision system for calculating the distance between the pick holder base and the roadheader cutting head side surface at the point where the pick holder is mounted. The proposed measurement method was tested on a robotic measurement station constructed for the purpose of the study. A mathematical measurement model and procedures that allow automatic positioning of the camera system to the photographed objects, as well as acquisition and analysis of the measurement images, were developed. The proposed method was validated by using it for measuring the position of the pick holders relative to the side surface of the working unit of a mining excavating machine, focusing on its application in robotic technology. The article also includes the results observed in laboratory tests performed on the developed measurement method with an aim of determining its suitability for the metrology task under consideration.


2020 ◽  
Vol 3 (1) ◽  
pp. 251-271
Author(s):  
Piotr Cheluszka ◽  
Amadeus Jagieła-Zając

AbstractEnsuring the compliance of the finished product with the project during the manufacturing of cutting heads/drums of the mining machines, largely determines the efficiency of rock mining, especially hard-to-cut rocks. The manufacturing process of these crucial elements of cutting machines is being robotized in order to ensure high accuracy and repeatability. This determines, among others the need to assess in real-time the degree of the approach of pick holders positioned by the industrial robot to the side surface of the working unit of the cutting machine in their target position. This problem is particularly important when in the manufacturing process are used the bodies of decommissioned cutting heads/drums, from which old pick holders have been removed. The shape and external dimensions of these hulls, unless they are subjected to regeneration, may differ quite significantly from the nominal ones. The publication, on the example of a road header cutting head, presents the procedure for automatically identifying and indexing markers displayed on its side surface, recorded on measuring photos by two digital cameras of a 3D vision system. Experimental research of the developed method was carried out using the KUKA VisionTech vision system installed on the test stand in the robotics laboratory of the Department of Mining Mechanization and Robotization at the Faculty of Mining, Safety Engineering and Industrial Automation of the Silesian University of Technology. Data processing was carried out in the Matlab environment using the libraries of the Image Processing Toolbox. The functions provided in this library were used in the developed algorithm, implemented in the software. This algorithm allows automatic identification of markers located in the images of the side surface of the cutting head. This is the basis for determining their location in space. The publication presents a method of segmenting images recorded by cameras into homogeneous areas. The method of separating interesting areas from the image by comparison to the pattern was presented. Also shown is the method of the automatic numbering of mutually matching pairs of markers on photos from two cameras included in the vision system depending on the spatial orientation of the marker grid in the measuring images.


Author(s):  
V.N. Zakharov ◽  
Yu.N. Linnik ◽  
V.Yu. Linnik ◽  
A.B. Zhabin ◽  
A. Zich

Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


1951 ◽  
Vol 3 (3) ◽  
pp. 116-118
Author(s):  
G. T. Clarkson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document