scholarly journals Analysis of heavy metal contamination in surface sediments of Iskenderun Bay, Turkey

2021 ◽  
Vol 50 (4) ◽  
pp. 411-420
Author(s):  
Banu Kutlu ◽  
Tahir Özcan ◽  
Gülnaz Özcan

Abstract The ecological risk resulting from the accumulation of some heavy metals in the sediments of Iskenderun Bay was assessed using the following measures: enrichment and contamination factor, pollution load index (PLI), and potential ecological risk index (RI). The concentrations of the studied heavy metals were in the following order: Fe > Ni > Mn > Cr > Zn > Cu > As > Pb > Cd > Hg. Ni and As had the highest EF values. This situation is most likely due to the presence of iron, pesticide, and fertilizer plants in the region. According to the United States Environmental Protection Agency, Ni, As, Mn, and Cr may have harmful effects on faunal communities in sediments. According to the RI, Site 4 was more contaminated and toxic than the other seven study sites, with “moderate” ecological risk. Pearson’s correlation coefficient was determined by multivariate methods – cluster and principal component analysis. As can be inferred from the RI values, the potential toxic effect of As and Ni in the sediments is moderate.

2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


2020 ◽  
Author(s):  
Nhung Thi Ha Pham ◽  
Izabella Babcsányi ◽  
Andrea Farsang

<p>The soil utilized for grape growing not only has faced the pollution problems but also could be suffered ecological risk by heavy metals from chemical fertilizers and Cu-fungicides. Hétszőlő vineyard (1.4 ha) with an alkaline reaction in soil (the average soil pH of the 0-10 cm soil layer was 8.02), which is located along and on the southern slope of Tokaj-hill, Tokaj-Hegyalja, Hungary was chosen as study area of this study. The total concentration of heavy metals, enrichment factors (EFs), pollution load index (PLI) and contamination factor (CF) were used to assess the current status and pollution degree of heavy metals in vineyard soil. Besides, the potential ecological risk would be evaluated via the ecological risk factor (Ei) of an individual metal (Zn, Pb, Co, Ni, Cr, Cu) and the potential ecological risk index (PER) of all studied metals.</p><p>Analysis results showed that all of the heavy metals had lower total contents on average compared with the Hungarian background and pollution limits (Joint Decree (6/2009. (IV. 14) KvVM-EüM-FVM and 10/2000. (VI. 2) KöM-EüM-FVM-KHVM), except for Cu (36.19 mg/kg), Ni (36.50 mg/kg) and Cr (60.26 mg/kg). Thus, the topsoil of Hétszőlő vineyard in Tokaj was contaminated by Ni, Cr, and Cu at a moderate level. EF analysis (Sc as reference element) reflected that Cu (EF = 2.70) was enriched moderately, in contrast Zn (EF = 1.22), Pb (EF = 1.05), Co (EF = 1.00) were not enriched in the vineyard topsoils. Although EF of Ni and Cr obtained at Tokaj were 1.66 and 2.30 respectively, EF<sub>min</sub> of these studied metals were around 1 and they EF<sub>max </sub>were higher than 2 demonstrated that these elements were enriched at some positions. The general assessment of EFs of all soil samples illustrated the anthropogenic origin of Cu, Cr, and Ni while Zn, Pb, and Co were enriched mainly from the geogenic process; and the enrichment process of heavy metals occurred more strongly at the bottom of the slope. CF, which was determined, could be divided into two groups in value, in which CF ≤ 1 presented a low contamination for Pb (CF = 0.71); Co (CF = 1.00), and 1 < CF < 3 was a moderate contamination for remaining metals Zn, Ni, Cr and Cu with CF figures were 1.06, 1.68, 2.28 and 2.08, respectively. Besides, the topsoil of Hétszőlő vineyard was considered in the moderate pollution status with FLI was 1.35. The results of Ei indicated that all heavy metal in the topsoil of vineyard showed a low ecological risk, with the descending order of contaminants was Cu (10.38) > Ni (10.07) > Co (4.98) > Cr (4.55) > Pb (3.54) > Zn (1.06). In addition, the mean PER was 34.59 and it revealed a low ecological risk for all metals in the vineyard soil. Even though there was a low potential ecological risk, the moderate level pollution of heavy metals, enrichment process, and the continuous using chemical compounds in viticulture could cause serious risk pollution by heavy metals in the future.</p>


Proceedings ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Agnieszka Gruszecka-Kosowska

The aim of these investigations was to determine the impact of heavy metals bound with deposited particulate matter (PM) on contamination degree and related toxicological effects by calculating enrichment indices, namely, the geo-accumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as the ecological risk index (ERI) and modified hazard quotient (mHQ). Calculations were made based on the selected element concentrations determined in deposited PM samples in Krakow. The results of the investigations revealed that deposited PM was enriched in heavy metals. As Igeo provides information on the level of metal accumulation, it was found that deposited PM was practically uncontaminated with Be, Cd, and Tl (class 0) but heavily to extremely contaminated (class 5) with Co and Sn and extremely contaminated (class 6) with As, Ba, Cr, Cu, Li, Mn, Ni, Pb, Sr, Ti, V, and Zn. On the other hand, the calculated values of CF revealed very high contamination of deposited PM with Cd and Zn, considerable contamination with Sn, Pb, and As, and moderate contamination with Cu and Li. Values of calculated EF revealed that among the investigated elements, only Zn originated from anthropogenic sources. For Cd, a small influence of anthropogenic sources was observed. For Pb and Sn, non-crustal sources of emission were expected. The calculated ERI values indicated potential ecological risk levels that were very high for Cd and considerable for Zn, as well as low potential ecological risk for As, Co, Cr, Cu, Ni, Pb, and Tl. Moreover, the calculated mHQ values of severity of contamination were extreme for Zn, considerable for Cr, and moderate for As, Cu, and Pb. The analysis revealed that the impact of atmospheric and re-suspended PM on inhabitants constitutes a complex effect of a mixture of heavy metals simultaneously affecting human health.


2017 ◽  
Vol 76 (8) ◽  
pp. 2177-2187 ◽  
Author(s):  
Xu Wang ◽  
Lijun Ren ◽  
Fengchao Jiao ◽  
Wenjie Liu

The concentrations of eight heavy metals (Cr, Hg, As, Pb, Cd, Cu, Zn, Ni) in six river sediment samples were collected for evaluation of the degree of the heavy metals pollution distribution and ecological risk of three main rivers' sediments in Jinan. Multivariate statistical techniques were used to determine the most common pollution sources. The results illustrated that all of the metals in Damatou and Xinfengzhuang sections of the Xiaoqing River were much higher than the background value, and the level of potential ecological risk index was very high. The remaining four sections had a low or moderate degree of ecological risk. Principal component analysis (PCA) showed that all metals, with the exception of As, formed the first component explaining 86.85% of the total variance and industry sources could be considered as the first component, while As alone could be the second component, representing agricultural source. The elements Cr and Zn were grouped together while the remaining six metals formed a separate category. Among all heavy metals, Hg and Cd were the most significant contributors to the pollution. Therefore, the prevention of pollution should pay more attention to controlling the sources, especially Hg and Cd.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 410
Author(s):  
Mohammad Abdus Salam ◽  
Mohammad Ashraful Alam ◽  
Sulav Indra Paul ◽  
Fatama Islam ◽  
Dinesh Chandra Shaha ◽  
...  

This study aimed to determine the levels and possible sources of heavy metals (HMs) in the sediments of Chalan beel (a large lake-like aquatic ecosystem) area located in the northwestern part of Bangladesh. The mean concentrations (mg kg−1) of two HMs, Cd (6.22) and Pb (51.39) exceeded the world normal averages (WNA), whereas the mean concentrations (mg kg−1) of Ni (60.46), Zn (10.75), Mn (8.64) and Cu (4.71) were below the WNA. The sediments showed significant enrichment with Cd, Pb and Ni in the studied area. The geo-accumulation index values of Cd (3.72) and Pb (0.76) were significantly higher in the sediments. The contamination factor and potential ecological risk index values of Cd and Pb revealed that Chalan beel was extremely and moderately contaminated by these heavy metals, respectively. Analysis of dye complexes used in handlooms around the Chalan beel areas revealed that mean concentrations of Cd and Pb exceeded the WNA. Furthermore, analyses of principal component, cluster and correlation matrix indicated that the presence of the higher levels of Cd and Pb in the sediments might be linked to various anthropogenic activities like discharged dyes into the beel water from the nearby handloom dyeing factories.


2021 ◽  
Author(s):  
Troyee Barua ◽  
AKM Saiful Islam Bhuian ◽  
Mayeen Uddin Khandaker ◽  
Nipa Deb ◽  
Shahadat Hossain ◽  
...  

Abstract The increased human population and associated activities may create a risk in the ecological balance of Chattogram Hill Tracts (CHT), Bangladesh via contamination of soil with toxic heavy metals. Thus, the present study was conducted to assess the concentration of heavy metals (Lead, Cadmium, Copper, Zinc, Iron, Manganese, Chromium and Nickel) in forest soils of the CHT area by using an atomic absorption spectrometer. The degree of contamination of soil was evaluated by five indices: geo-accumulation index (I geo ), enrichment factor (EF), contamination factor (CF), pollution load index (PLI) and potential ecological risk index (PERI). According to these criteria, these soils can be classified as moderately contaminated with some metals. Furthermore, the identification of pollution sources based on principal component analysis and hierarchical cluster analysis have revealed that all analyzed metals are anthropogenic except Fe. Calculated hazard index>1 indicates the possibility of noncarcinogenic effect due to higher value of Fe. Carcinogenic risks through the ingestion, inhalation and dermal pathway for carcinogenic elements (Pb, Cd, Cr, and Ni) shows a non-significant risk (CR<10 -6 ) for both children and adults living in the studied area. Measured data may help the policymakers to reduce the potential effects of soil contamination on eco-environment and human health.


Author(s):  
Serkan Kürker

In this study, ecological risks arising from the accumulation of some heavy metals in surface sediments of Lake Tortum are discussed based on the use of ecological indices, such as enrichment factor (EF), contamination factor (CF), pollution load index (PLI), potential ecological risk index (PER) and the mean probable effect concentration quotient (mPEC-Q). Sediment samples were collected from six different sites using Van Veen grab and heavy metal and organic carbon content of sediments were determined. Results testify to the existence of minimal to moderate contamination in lake sediment. The highest value for the enrichment factor pertains to Cd caused by the use of fossil fuels in settlement areas in the lake catchment. PLI and PER estimations, on the other hand, reveals the presence of low heavy metals-induced ecological risk in lake sediments. Ranging between 15% and 29%, mPEC-Q values are indicative of the fact that Lake Tortum is a low-moderate priority site in terms of toxicity level caused by heavy metals.


Sign in / Sign up

Export Citation Format

Share Document