scholarly journals Analytical sonochemistry; developments, applications, and hyphenations of ultrasound in sample preparation and analytical techniques

2012 ◽  
Vol 10 (4) ◽  
pp. 938-976 ◽  
Author(s):  
Shahram Seidi ◽  
Yadollah Yamini

AbstractUltrasonic assistance is one of the great successes of modern analytical chemistry, which uses this energy for a variety of purposes in relation to sample preparation and development of methods for the analysis of numerous contaminants including organic and inorganic compounds. This review will attempt to provide an overview of more recent applications of ultrasound in different environmental and biological samples such as food, soil and water as well as a brief description of the theoretical understanding of this method. Also, the possibility of coupling ultrasound with other analytical techniques will be discussed.

2018 ◽  
Vol 40 (2) ◽  
pp. 58-59
Author(s):  
Daniel Rabinovich

Abstract The tools of analytical chemistry, and the expertise and enthusiasm of many of its practitioners, have had a profound influence in the field of cultural heritage [1, 2]. Analytical techniques, especially those involving non-destructive methods of examination, have played a key role in the characterization, restoration, and preservation of an incredible range of works of art and cultural heritage, including ceramics, textiles, paintings, books, drawings, sculptures, jewelry, and a myriad of artifacts made of glass, wood, or metal. In addition, modern analytical instrumentation has been successfully applied to study the techniques used to produce heritage materials, to verify the authorship or estimate the date of pieces of art, and to detect reproductions and forgeries.


2009 ◽  
Vol 42 (6-7) ◽  
pp. 284-295 ◽  
Author(s):  
M. Luisa Cervera ◽  
Miguel de la Guardia ◽  
Suparna Dutta ◽  
Arabinda Kumar Das

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2790
Author(s):  
Natalia Manousi ◽  
Orfeas-Evangelos Plastiras ◽  
Eleni A. Deliyanni ◽  
George A. Zachariadis

Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mustafa Çelebier ◽  
Merve Nenni

Background: Metabolomics has gained importance in clinical applications over the last decade. Metabolomics studies are significant because the systemic metabolome is directly affected by disease conditions. Metabolome-based biomarkers are actively being developed for early diagnosis and to indicate the stage of specific diseases. Additionally, understanding the effect of an intervention on a living organism at the molecular level is a crucial strategy for understanding novel or unexpected biological processes. Results: The simultaneous improvements in advanced analytical techniques, sample preparation techniques, computer technology, and databank contents has enabled more valuable scientific information to be gained from metabolomics than ever before. With over 15,000 known endogenous metabolites, there is no single analytical technique capable of analyzing the whole metabolome. However, capillary electrophoresis-mass spectrometry (CE-MS) is a unique technique used to analyze an important portion of metabolites not accessible by liquid chromatography or gas chromatography techniques. The analytical capability of CE, combined with recent sample preparation techniques focused on extracting polar-ionic compounds, make CE-MS a perfect technique for metabolomic studies. Conclusion: Here, previous reviews of CE-MS based metabolomics are evaluated to highlight recent improvements in this technique. Specifically, we review papers from the last two years (2018 and 2019) on CE-MS based metabolomics. The current situation and the challenges facing metabolomic studies are discussed to reveal the high potential of CE-MS for further studies, especially in biomarker development studies.


Sign in / Sign up

Export Citation Format

Share Document