scholarly journals Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2790
Author(s):  
Natalia Manousi ◽  
Orfeas-Evangelos Plastiras ◽  
Eleni A. Deliyanni ◽  
George A. Zachariadis

Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.

RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25702-25709 ◽  
Author(s):  
R. Karthik ◽  
Mani Govindasamy ◽  
Shen-Ming Chen ◽  
Tse-Wei Chen ◽  
J. Vinoth kumar ◽  
...  

An electrochemical sensor based on graphene oxide modified glassy carbon electrode for the determination of anti-cancer drug flutamide.


2021 ◽  
Vol 13 (1) ◽  
pp. 56-63
Author(s):  
Qiuqiu Wang ◽  
Juanhua Zhang ◽  
Yanbo Xu ◽  
Yingyi Wang ◽  
Liang Wu ◽  
...  

One-step electrochemically reduced graphene oxide with high surface area and improved electron transfer kinetics shows great performances in the determination of furfural in dairy milk.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2086 ◽  
Author(s):  
Martha Maggira ◽  
Eleni A. Deliyanni ◽  
Victoria F. Samanidou

In the present study, a novel, simple, and fast sample preparation technique is described for the determination of four sulfonamides (SAs), namely Sulfathiazole (STZ), sulfamethizole (SMT), sulfadiazine (SDZ), and sulfanilamide (SN) in cow milk prior to HPLC. This method takes advantage of a novel material that combines the extractive properties of graphene oxide (GO) and the known properties of common polyurethane sponge (PU) and that makes sample preparation easy, fast, cheap and efficient. The PU-GO sponge was prepared by an easy and fast procedure and was characterized with FTIR spectroscopy. After the preparation of the sorbent material, a specific extraction protocol was optimized and combined with HPLC-UV determination could be applied for the sensitive analysis of trace SAs in milk. The proposed method showed good linearity while the coefficients of determination (R2) were found to be high (0.991–0.998). Accuracy observed was within the range 90.2–112.1% and precision was less than 12.5%. Limit of quantification for all analytes in milk was 50 μg kg−1. Furthermore, the PU-GO sponge as sorbent material offered a very clean extract, since no matrix effect was observed.


2012 ◽  
Vol 10 (4) ◽  
pp. 938-976 ◽  
Author(s):  
Shahram Seidi ◽  
Yadollah Yamini

AbstractUltrasonic assistance is one of the great successes of modern analytical chemistry, which uses this energy for a variety of purposes in relation to sample preparation and development of methods for the analysis of numerous contaminants including organic and inorganic compounds. This review will attempt to provide an overview of more recent applications of ultrasound in different environmental and biological samples such as food, soil and water as well as a brief description of the theoretical understanding of this method. Also, the possibility of coupling ultrasound with other analytical techniques will be discussed.


Sign in / Sign up

Export Citation Format

Share Document