scholarly journals Flow-injection spectrophotometric determination of dipyrone in pharmaceutical formulations using a solid-phase reactor with copper(II) phosphate

2013 ◽  
Vol 11 (11) ◽  
pp. 1830-1836 ◽  
Author(s):  
Viviane Bonifácio ◽  
Orlando Filho ◽  
Luiz Marcolino-Júnior

AbstractIn this work, a flow-injection spectrophotometric method for dipyrone determination in pharmaceutical formulations was developed. Dipyrone sample solutions were injected into a carrier stream of deionized water and the reaction was carried out in a solid-phase reactor (12 cm, 2.0 mm i.d.) packed with Cu3(PO4)2(s) entrapped in a matrix of polyester resin. The Cu(II) ions were released from the solid phase reactor by the formation of Cu(II)-(dipyrone)n complex. When the complex is released, it reacts with 0.02% m/v alizarin red S in deionized water to produce a Cu(VABO3)3 complex whose absorbance was monitored at 540 nm. The calibration graph was linear over the range 5.0×10−5–4.0×10−4 mol L−1 with a detection limit of 2.0×10−5 mol L−1 and relative standard deviation for 10 successive determinations of 1.5% (2.0×10−4 mol L−1 dipyrone solution). The calculated sample throughput was 60 h−1. The column was stable for at least 8 h of continuous use (500 injections) at 25°C. Pharmaceutical formulations were analyzed and the results from an official procedure measurement were compared with those from the proposed FIA method in order to validate the latter method.

2012 ◽  
Vol 48 (2) ◽  
pp. 325-333 ◽  
Author(s):  
Fernando Campanhã Vicentini ◽  
Willian Toito Suarez ◽  
Éder Tadeu Gomes Cavalheiro ◽  
Orlando Fatibello-Filho

A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.


Author(s):  
Mariam Jamal ◽  
Hind Hadi

Objective: A simple and fast reverse flow injection system including a solid-phase reactor containing PbO2 with spectrophotometric detection was suggested for the determination of nitrazepam (NIT) in pharmaceutical tablets.Methods: The method was based on oxidation of the reagent (phloroglucinol) with PbO2 immobilized in a polymeric matrix which was then coupled with reduced NIT in aqueous medium. The pink-colored product was measured at 530 nm.Results: The calibration graph was linear over the range of 50–400 μg/mL with a relative standard deviation of <2% (n=29) and a sample throughput of 48 samples per hour. The variables of the solid-phase reactor such as composition, particle size, and length of the reactor were studied. The chemical and physical parameters, which affect the reverse flow method, were also studied.Conclusion: The oxidation reactor engaged with a flow system was successfully applied for the determination of NIT with good sensitivity and precision.


2001 ◽  
Vol 84 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Yolanda Fuster Mestre ◽  
Luis Lahuerta Zamora ◽  
José Martínez Calatayud

Abstract A new method is proposed for the determination of phenylephrine hydrochloride by flow injection analysis with direct chemiluminescence detection. The method is based on the oxidation of the drug by potassium permanganate in sulfuric acid medium at 80°C. The calibration graph is linear over the range 0.03–8 ppm phenylephrine hydrochloride, with a relative standard deviation (n = 51, 0.5 ppm) of 1.1% and sample throughput of 134/h. The influence of 38 different foreign compounds was tested, and the method was applied to the determination of phenylephrine hydrochloride in 8 different pharmaceutical formulations.


2011 ◽  
Vol 89 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Ke-Jing Huang ◽  
Cong-Hui Han ◽  
Ying-Ying Wu ◽  
Chao-Qun Han ◽  
De-Jun Niu ◽  
...  

A simple and efficient solid-phase extraction – spectrofluorimetric method has been developed to determine glutathione (GSH). Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was used as the derivatization reagent. The procedure was based on a BODIPY Fl-C1-IA selective reaction with GSH to form the highly fluorescent product BODIPY Fl-C1-IA–GSH, using a solid-phase extraction column and spectrofluorimetric determination. The variables affecting analytical performance were studied and optimized. The calibration graph using the preconcentration system for GSH was linear over the range of 1–200 nmol/L with a limit of detection of 0.05 nmol/L (signal-to-noise ratio = 3). The relative standard deviation for six replicate determinations of GSH at the 100 nmol/L concentration level was 3.9%. The method was applied to water samples and average recoveries between 87.5% and 111.5% were obtained for spiked samples.


2020 ◽  
Vol 42 (1) ◽  
pp. 31-31
Author(s):  
Malik H Alaloosh Alamri Malik H Alaloosh Alamri ◽  
Sadeem Subhi Abed and Abdulkareem M A Alsammarraie Sadeem Subhi Abed and Abdulkareem M A Alsammarraie

Bendiocarb (BEN) is an acutely toxic carbamate insecticide which used in public places and agriculture, it is also effective against a wide range of nuisance and disease vector insects. A new rapid and sensitive reverse flow injection spectrophotometric procedure coupled with on-line solid-phase reactor is designed in this article for the determination of BEN in its insecticidal formulations and water samples, by using three different solid-phase reactors containing bulk PbO2 (B-SPR), PbO2 nanoparticles (N-SPR) and grafted nanoparticles of SiO2-PbO2 (G-SPR) immobilized on cellulose acetate matrix (CA). This method of oxidative coupling is based on alkaline hydrolysis of the BEN pesticide, and then coupled with N,N dimethyl-p-phenylenediamine sulphate (DMPD) to give a blue color product which measured at λmax 675 nm. It worth to mentioned that under optimal conditions, Beer’s law is obeyed in the range of 1-175 μg mL-1 for B-SPR and 0.25-70 μg mL-1 of BEN for both N-SPR and G-SPR respectively within limit of detection (LOD) of 0.931, 0.234 and 0.210 μg mL-1 for B-SPR N-SPR and G-SPR respectively. The surface methodology of the solid phase was also investigated by using atomic force microscopy.


2018 ◽  
Vol 33 (2) ◽  
pp. 47
Author(s):  
Orlando Fatibello-Filho ◽  
Heberth Juliano Vieira

A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.


Sign in / Sign up

Export Citation Format

Share Document